Polymer Bulletin

, Volume 62, Issue 6, pp 737–747 | Cite as

Through-space conjugated polymer containing [2.2]paracyclophane and dithiafulvene units in the main chain

  • Yasuhiro Morisaki
  • Lin Lin
  • Yoshiki Chujo
Original Paper


A new through-space conjugated polymer containing alternate [2.2]paracyclophane and dithiafulvene units was synthesized by cycloaddition polymerization of aldothioketene derived from 4,16-diethynyl[2.2]paracyclophane. The obtained polymer was soluble in common organic solvents and could form thin films. UV–vis absorption spectrum of the polymer revealed that its conjugation length increased due to the through-space interaction of the [2.2]paracyclophane units. The polymer formed a charge transfer (CT) complex with 7,7,8,8-tetracyanoquinodimethane (TCNQ) in DMSO.


Through-space conjugation [2.2]Paracyclophane Dithiafulvene Charge transfer complex 



This work was supported by Grant-in-Aid for Creative Scientific Research of “Invention of Conjugated Electronic Structures and Novel Functions”, No. 16GS0209, from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.


  1. 1.
    Skothim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers. Angew Chem Int Ed 40:2574CrossRefGoogle Scholar
  3. 3.
    MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers. Angew Chem Int Ed 40:2581CrossRefGoogle Scholar
  4. 4.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Angew Chem Int Ed 40:2591CrossRefGoogle Scholar
  5. 5.
    de Boer B, Facchetti A (2008) Semiconducting polymeric materials. Polym Rev 48:423CrossRefGoogle Scholar
  6. 6.
    Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog Polym Sci 27:135CrossRefGoogle Scholar
  7. 7.
    Shim HK, Jin JI (2002) Light-emitting characteristics of conjugated polymers. Adv Polym Sci 158:193CrossRefGoogle Scholar
  8. 8.
    Kraft A, Grimsdale AC, Holmes AB (1998) Electroluminescent conjugated polymers—seeing polymers in a new light. Angew Chem Int Ed 37:402CrossRefGoogle Scholar
  9. 9.
    Brown CJ, Farthing AC (1949) Preparation and structure of di-p-xylylene. Nature 164:915CrossRefGoogle Scholar
  10. 10.
    Vögtle F (1993) Cyclophane chemistry. Wiley, New YorkGoogle Scholar
  11. 11.
    Shultz J, Vögtle F (1994) Transition metal complexes of (strained) cyclophanes. Top Curr Chem 172:41CrossRefGoogle Scholar
  12. 12.
    Cleiter R, Hopf H (eds) (2004) Modern cyclophane chemistry. Wiley-VCH, WeinheimGoogle Scholar
  13. 13.
    Recent review, see: Hopf H (2008) Acetylenic cyclophanes: emerging carbon-rich compounds for molecular construction and practical applications. Angew Chem Int Ed 47:9808Google Scholar
  14. 14.
    Cram DJ, Allinger NL, Steinberg H (1954) Macro rings. 12. Stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc 76:6132CrossRefGoogle Scholar
  15. 15.
    Heilbronner E, Yang ZZ (1983) The electronic structure of cyclophanes as suggested by their photoelectron spectra. Top Curr Chem 115:1Google Scholar
  16. 16.
    Canuto S, Zerner MC (1990) Theoretical interpretation of the absorption and ionization spectra of the paracyclophane. J Am Chem Soc 112:2114CrossRefGoogle Scholar
  17. 17.
    Yamakita Y, Yamauchi M, Ohno K (2000) Penning ionization of [2.2]paracyclophane by collision with metastable He*(2(3)S) atoms. Chem Phys Lett 322:189CrossRefGoogle Scholar
  18. 18.
    Oldham WJ Jr, Miao YJ, Lachicotte RJ, Bazan GC (1998) Stilbenoid dimers: effect of conjugation length and relative chromophore orientation. J Am Chem Soc 120:419CrossRefGoogle Scholar
  19. 19.
    Bazan GC, Oldham WJ Jr, Lachicotte RJ, Tretiak S, Chernyak V, Mukamel S (1998) Stilbenoid dimers: dissection of a paracyclophane chromophore. J Am Chem Soc 120:9188CrossRefGoogle Scholar
  20. 20.
    Wang S, Bazan GC, Tretiak S, Mukamel S (2000) Oligophenylenevinylene phane dimers: probing the effect of contact site on the optical properties of bichromophoric pairs. J Am Chem Soc 122:1289CrossRefGoogle Scholar
  21. 21.
    Nishimura J, Yamashita S (1982) In: Butler GB, Kresta JE (eds) Cyclopolymerization and polymers with chain-ring structures. American Chemical Society, Washington, p 177Google Scholar
  22. 22.
    Furukawa J, Nishimura J (1976) Cyclopolymerization of α,ω-bis(4-vinylphenyl)alkane—polymer containing [3.3]paracyclophane unit in main chain. J Polym Sci Polym Lett Ed 14:85CrossRefGoogle Scholar
  23. 23.
    Furukawa J, Nishimura J (1976) Cationic cyclopolymerization of α,ω-bis(4-vinylphenyl)alkanes—polymer containing [3.3]paracyclophane units in main chain. J Polym Sci Polym Symp 56:437Google Scholar
  24. 24.
    Nishimura J, Yamashita S (1979) Polymerization of α,ω-bis(para-isopropenylphenyl)alkanes by means of stannic chloride. Polym J 11:619CrossRefGoogle Scholar
  25. 25.
    Nishimura J, Mimura M, Nakazawa N, Yamashita S (1980) C3 cyclopolymerization. II. Charge-transfer cyclopolymerization of 1,3-bis(p-vinylphenyl)propane. J Polym Sci Polym Chem Ed 18:2071CrossRefGoogle Scholar
  26. 26.
    Nishimura J, Furukawa M, Yamashita S, Inazu T, Yoshino T (1981) C3 cyclopolymerization. IV. Cationic polymerization of 1,3-bis(4-vinylnaphthyl)propane and the polymer structure yielded. J Polym Sci Polym Chem Ed 19:3257CrossRefGoogle Scholar
  27. 27.
    Glatzhofer DT, Longone DT (1986) Extended cooperative electronic effects in poly((E,E)-[6.2]paracyclophane-1,5-diene). J Polym Sci Part A Polym Chem 24:947CrossRefGoogle Scholar
  28. 28.
    Longone DT, Glatzhofer DT (1986) Cyclopolymerization of (E,E)-[6.2]paracyclophane-1,5-diene. J Polym Sci Part A Polym Chem 24:1725CrossRefGoogle Scholar
  29. 29.
    Ulański J, Kubacki J, Glowacki I, Kryszewski M, Glatzhofer DT (1992) Photoconductivity of poly((E,E)-[6.2]paracyclophane-1,5-diene) and its complex with TCNE. J Appl Polym Sci 44:2103CrossRefGoogle Scholar
  30. 30.
    Ulański J, Sielski J, Glatzhofer DT, Kryszewski M (1990) Poly(paracyclophane)—high-mobility photoconducting polymer. J Phys D 23:75CrossRefGoogle Scholar
  31. 31.
    Iwatsuki S, Itoh T, Kubo M, Okuno H (1994) Synthesis and polymerization of 4-vinyl[2.2]paracyclophane. Polym Bull 32:27CrossRefGoogle Scholar
  32. 32.
    Meyers RA, Hamersma JW, Green HA (1972) Paracyclophane units: versatile segments for polymer chain crosslink formation. J Polym Sci B 10:685CrossRefGoogle Scholar
  33. 33.
    Sivaramakrishnan KP, Samyn C, Westerman IJ, Wong DT, Marvel CS (1975) Aromatic polyethers, polysulfones, and polyketones as laminating resins. IV. Polymers with p-cyclophane units for crosslinking. J Polym Sci Polym Chem Ed 13:1083CrossRefGoogle Scholar
  34. 34.
    Chang DM, Marvel CS (1975) Aromatic polyethers, polysulfones, and polyketones as laminating resins. VII. Polymers with [2.2]-p-cyclophane units. J Polym Sci Polym Chem Ed 13:2507CrossRefGoogle Scholar
  35. 35.
    Lin S, Marvel CS (1983) Polyaromatic ether-sulfone-ketones with fluorosubstituted para-cyclophane units as crosslinking sites. J Polym Sci Polym Chem Ed 21:1151CrossRefGoogle Scholar
  36. 36.
    Salhi F, Collard DM (2002) Oligothiophene-substituted paracyclophanes: models for stacked, doped conjugated polymers. Polym Mater Sci Eng 222Google Scholar
  37. 37.
    Salhi F, Collard DM (2003) π-Stacked conjugated polymers: the influence of paracyclophane π-stacks on the redox and optical properties of a new class of broken conjugated polythiophenes. Adv Mater 15:81CrossRefGoogle Scholar
  38. 38.
    Guyard L, Audebert P (2001) Synthesis and electrochemical polymerization of bis-dithienyl cyclophane. Elecrochem Commun 3:164CrossRefGoogle Scholar
  39. 39.
    Guyard L, Nguyen Dinh An M, Audebert P (2001) Synthesis and electrochemical polymerization of new oligothiophene functionalized cyclophanes. Adv Mater 13:133CrossRefGoogle Scholar
  40. 40.
    Morisaki Y, Chujo Y (2006) Through-space conjugated polymers based on cyclophanes. Angew Chem Int Ed 45:6430CrossRefGoogle Scholar
  41. 41.
    Morisaki Y, Chujo Y (2008) Cyclophane-containing polymers. Prog Polym Sci 33:346CrossRefGoogle Scholar
  42. 42.
    Morisaki Y, Chujo Y (2002) Synthesis of novel π-conjugated polymers having [2.2]paracyclophane skeleton in the main chain. Extension of π-conjugated length via the through-space. Macromolecules 35:587CrossRefGoogle Scholar
  43. 43.
    Morisaki Y, Chujo Y (2002) Synthesis of novel alternating π-conjugated copolymers having [2.2]paracyclophane and fluorene units in the main chain leading to the blue light-emitting materials. Chem Lett 194Google Scholar
  44. 44.
    Morisaki Y, Ishida T, Chujo Y (2002) Synthesis and properties of novel through-space π-conjugated polymers based on poly(p-phenylenevinylene)s having a [2.2]paracyclophane skeleton in the main chain. Macromolecules 35:7872CrossRefGoogle Scholar
  45. 45.
    Morisaki Y, Chujo Y (2002) Synthesis and optical properties of the [2.2]paracyclophane-containing π-conjugated polymer with a diacetylene unit. Polym Bull 49:209CrossRefGoogle Scholar
  46. 46.
    Morisaki Y, Fujimura F, Chujo Y (2003) Synthesis and properties of novel σ-π-conjugated polymers with alternating organosilicon and [2.2]paracyclophane units in the main chain. Organometallics 22:3553CrossRefGoogle Scholar
  47. 47.
    Morisaki Y, Chujo Y (2003) Synthesis and properties of a novel through-space conjugated polymer with [2.2]paracyclophane and ferrocene in the main chain. Macromolecules 36:9319CrossRefGoogle Scholar
  48. 48.
    Morisaki Y, Chujo Y (2004) Novel [2.2]paracyclophane-fluorene-based conjugated copolymers: synthesis, optical, and electrochemical properties. Macromolecules 37:4099CrossRefGoogle Scholar
  49. 49.
    Morisaki Y, Ishida T, Tanaka H, Chujo Y (2004) Synthesis and properties of the [2.2]paracyclophane-containing conjugated polymer using benzothiadiazole as an electron accepter. J Polym Sci Part A Polym Chem 42:5891CrossRefGoogle Scholar
  50. 50.
    Morisaki Y, Wada N, Chujo Y (2005) Novel conjugated polymers containing [2.2]paracyclophane and carbazole units with efficient photoluminescence. Polym Bull 53:73CrossRefGoogle Scholar
  51. 51.
    Morisaki Y, Wada N, Chujo Y (2005) Novel π-conjugated cyclophane polymers containing phenylamine moieties with strong blue-light emission. Polymer 46:5884CrossRefGoogle Scholar
  52. 52.
    Morisaki Y, Chujo Y (2005) Novel through-space conjugated polymers consisting of alternate [2.2]paracyclophane and fluorene. Bull Chem Soc Jpn 78:288CrossRefGoogle Scholar
  53. 53.
    Morisaki Y, Wada N, Arita M, Chujo Y (2009) Synthesis of through-space conjugated polymers containing the pseudo-ortho-linked [2.2]paracyclophane moiety. Polym Bull 62:305CrossRefGoogle Scholar
  54. 54.
    Morisaki Y, Chujo Y (2005) Construction of benzene ring-layered polymers. Tetrahedron Lett 46:2533CrossRefGoogle Scholar
  55. 55.
    Morisaki Y, Murakami T, Chujo Y (2008) Synthesis and properties of [2.2]paracyclophane-layered polymers. Macromolecules 41:5960CrossRefGoogle Scholar
  56. 56.
    Raap R (1968) Reaction of 1,2,3-thiadizaoles with base II thioneesters from thioketene intermediates. Can J Chem 46:2251CrossRefGoogle Scholar
  57. 57.
    Sukhai RS, de Jong R, Verkruijsse HD, Brandsma L (1981) Synthesis of 6-membered and 7-membered heterocycles by reaction of 1-(2-chloroethylthio)-1-alkynes and 1-(3-chloropropylthio)-1-alkynes with alkali-metal sulfide, selenide and telluride. Recl Trav Chim Pays-Bas 100:368Google Scholar
  58. 58.
    Harris SJ, Walton DRM (1977) Alkynethiol derivatives of group IVB elements. J Organomet Chem 127:C1CrossRefGoogle Scholar
  59. 59.
    Naka K, Uemura T, Chujo Y (1998) Synthesis of π-conjugated poly(dithiafulvene) by cycloaddition polymerization of aldothioketene with its alkynethiol tautomer. Macromolecules 31:7570CrossRefGoogle Scholar
  60. 60.
    Naka K, Uemura T, Chujo Y (1999) π-Conjugated poly(dithiafulvene) by cycloaddition polymerization of aldothioketene with its alkynethiol tautomer. Polymerization, optical properties, and electrochemical analysis. Macromolecules 32:4641CrossRefGoogle Scholar
  61. 61.
    Naka K, Uemura T, Chujo Y (2000) Linearly extended pi-conjugated dithiafulvene polymer formed soluble charge-transfer complex with 7,7,8,8-tetracyanoquinodimethane. Polym J 32:435CrossRefGoogle Scholar
  62. 62.
    Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ (1996) Organometallics 15:1518CrossRefGoogle Scholar
  63. 63.
    Negishi E, Kotora M, Xu C (1997) J Org Chem 62:8957CrossRefGoogle Scholar
  64. 64.
    Morisaki Y, Shiotani Y, Lin L, Chujo Y (2008) Synthesis of PAMAM dendrimers possessing [2.2]paracyclophane on their surface. Polym J 40:779CrossRefGoogle Scholar
  65. 65.
    Merby LR, Harder RJ, Hertler WR, Mahler W, Benson RE, Mochel WE (1962) 84:3374Google Scholar
  66. 66.
    Gong JP, Kawakami I, Sergeyev VG, Osada Y (1991) 24:5246Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations