Advertisement

Polymer Bulletin

, Volume 61, Issue 2, pp 147–156 | Cite as

Chelating polymer-based membranes. Preparation and use for metal ion scavenging and sorption of murine immunoglobulin G by immobilized Ni(II) ions

  • Kateřina KráčalíkováEmail author
  • Miroslav Bleha
Article

Abstract

Copolymers of 2-(2-hydroxyethoxy)ethyl methacrylate and ethylene dimethacrylate in the form of homogeneous membrane sheets were modified by chelating groups of iminodiacetic acid (IDA) in a two step reaction. The obtained sorbents showed high chelating capacity for Ni(II), Cu(II) and Fe(III) ions (up to 1.3 mmol/g). The potential use of immobilized Ni(II)-IDA complexes for sorption of murine immunoglobulin G by the immobilized metal affinity (IMA) method was tested. The sorption behaviour was characterized by a Langmuir-Freundlich adsorption isotherm. It was shown that the chelating membranes could be used for the sorption of low amounts of protein.

Keywords

Ethyl Methacrylate Coir Fibre Iminodiacetic Acid Membrane Sheet Tosylchloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singh M, Srinivasan KV (2002) Chromatographia 56:717–722CrossRefGoogle Scholar
  2. 2.
    Beauvais RA, Alexandratos SD (1998) React Funct Polym 36:113–123CrossRefGoogle Scholar
  3. 3.
    Alieva RA, Gamidov SZ, Chyragov FM, Azizov AA (2005) J Anal Chem 60:1114–1117CrossRefGoogle Scholar
  4. 4.
    Do L, Smith RC, Tennyson AG, Lippard SJ (2006) Inorg Chem 45:8998–9005CrossRefGoogle Scholar
  5. 5.
    Hrubý M, Hradil J, Beneš MJ (2004) React Funct Polym 59:105–118CrossRefGoogle Scholar
  6. 6.
    Porath J, Carlsson J, Olsson I, Belfrage G (1975) Nature 258:598–599CrossRefGoogle Scholar
  7. 7.
    Gomez CG, Alvarez Igarzabal CI, Strumia MC (2005) Polymer 46:6300–6307CrossRefGoogle Scholar
  8. 8.
    Emir S, Say R, Yavuz H, Denizli A (2004) Biotechnol Prog 20:223–228CrossRefGoogle Scholar
  9. 9.
    Denizli A, Garipcan B, Emir S, Patir S, Say R (2002) Adsorption Sci Technol 20:607–617CrossRefGoogle Scholar
  10. 10.
    Garipcan B, Andac M, Uzun L, Denizli A (2004) React Funct Polym 59:119–128CrossRefGoogle Scholar
  11. 11.
    Denizli A, Senel S, Arica MY (1998) Colloid Surf B 11:113–122CrossRefGoogle Scholar
  12. 12.
    Arica MY, Testereci HN, Denizli A (1998) J Chromatogr A 799:83–91CrossRefGoogle Scholar
  13. 13.
    Hale JE, Beidler DE (1994) Anal Biochem 222:29–33CrossRefGoogle Scholar
  14. 14.
    Kopeèek J, Jokl J, Lím D (1968) J Polym Sci C 16:3877–3889Google Scholar
  15. 15.
    Gomez CG, Alvarez CI, Strumia MC, Rivas BL, Reyes P (2001) J Appl Polym Sci 79:920–927CrossRefGoogle Scholar
  16. 16.
    Warburg O, Christian W (1941) Biochem Z 310:384–421Google Scholar
  17. 17.
    Kopeèek J, Lím D (1971) Collect Czech Chem Commun 36:2703–2707Google Scholar
  18. 18.
    Gatenholm P, Michálek J, Vacík J (1996) Macromol Symp 109:127–133Google Scholar
  19. 19.
    Karlsson JO, Gatenholm P (1996) Polymer 37:4251–4256CrossRefGoogle Scholar
  20. 20.
    Mészárosová K, Tishchenko G, Bouchal K, Bleha M (2003) React Funct Polym 56:27–35CrossRefGoogle Scholar
  21. 21.
    Shukla SR, Pai RS, Shendarkar AD (2006) Sep Purif Technol 47:141–147CrossRefGoogle Scholar
  22. 22.
    Pearson RG (1990) Coord Chem Rev 100:403–425CrossRefGoogle Scholar
  23. 23.
    Serpa G, Augusto EFP, Tamashiro WMSC, Ribeiro MB, Miranda EA, Bueno SMA (2005) J Chromatogr B 816:259–268CrossRefGoogle Scholar
  24. 24.
    Sharma S, Agarwal GP (2001) Anal Biochem 288:126–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Macromolecular Chemistry AS CR, v.v.i.Prague 6Czech Republic

Personalised recommendations