Advertisement

Polymer Bulletin

, Volume 60, Issue 5, pp 647–655 | Cite as

PVDF based all-organic composite with high dielectric constant

  • Ye Wang
  • Jingwen WangEmail author
  • Fang Wang
  • Shuqin Li
  • Jun Xiao
Article

Abstract

High dielectric constant copper phthalocyanine oligomer (o-CuPc) was chemically grafted to poly(p-chloromethyl styrene) (PCMS) to improve its dispersibility in PVDF. From SEM results, the size of o-CuPc-g-PCMS particles in the blend of poly(vinylidene fluoride) (PVDF) and o-CuPc-g-PCMS (o-CuPc-g-PCMS/PVDF) was about 70nm, less than 1/7 the size of o-CuPc in o-CuPc/PVDF. In addition, o-CuPc-g-PCMS in o-CuPc-g-PCMS/PVDF showed much improved dispersibility. Both of the improvements obviously enhanced the electric properties of the composite. The dielectric constant of o-CuPc-g-PCMS/PVDF was more than 325 (100Hz), which was about 7 times higher than that of o-CuPc/PVDF. The dielectric constant at high frequencies (∼1MHz) was also high (∼130).

Keywords

Dielectric Constant PVDF Inductively Couple Plasma Atomic Emission Spectrometry Vinylidene Fluoride PVDF Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang QM, Li HF, Poh M, Xu HS, Cheng ZY, Xia F, Huang C (2002) Nature (London) 419:284CrossRefGoogle Scholar
  2. 2.
    Baughman RH (1996) Synth Metals 78(3):339CrossRefGoogle Scholar
  3. 3.
    Wax SG, Sands RR (1999) SPIE Smart Structured Mater 3669:2Google Scholar
  4. 4.
    Cheng ZY, Bharti V, Xu TB, Xu H, Mai T, Zhang QM (2001) Sensors and Actuators A 90(1):138CrossRefGoogle Scholar
  5. 5.
    Pelrine RE, Kornbluh RD Joseph JP (1998) A-Phys 64:77Google Scholar
  6. 6.
    Li J, Rao N (2002) Appl Phys Lett 81:1860CrossRefGoogle Scholar
  7. 7.
    Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) J Phys D: Appl Phys 34:487CrossRefGoogle Scholar
  8. 8.
    Rao Y, Yue J, Wong CP (2001) 51st Electronic Components and Technology Conference IEEE Proc 1408Google Scholar
  9. 9.
    Nalwa HS, Dalton LR, Vasudevan P (1985) Euro Polym J 21(11):943CrossRefGoogle Scholar
  10. 10.
    Wang JW, Shen QD, Yang CZ (2004) Macromolecules 37:2294CrossRefGoogle Scholar
  11. 11.
    Wang JW, Shen QD, Bao HM, Yang CZ (2005) Macromolecules 38:2247CrossRefGoogle Scholar
  12. 12.
    Achar BN, Fohlen GM, Parker JA (1982) J Polym Sci Polym Chem 20:1785Google Scholar
  13. 13.
    Jo~ao Sinézio de CC, Alexandre AR, Celso XC (2007) Materials Science and Engineering B 136:123CrossRefGoogle Scholar
  14. 14.
    Peng YL, Liu Y, Qian Y (2006) Membrane Science and Technology 26(1):31Google Scholar
  15. 15.
    Sheldon RP (1982) Composite Polymeric Materials London and New YorkGoogle Scholar
  16. 16.
    Lovinger AJ (1982) Poly(vinylidene fluoride) Development in Crystalline Polymers: Polymers-1 Applied Science Publishers London and New YorkGoogle Scholar
  17. 17.
    Warren BE (1990) X-ray Diffraction. Dover Publications, New YorkGoogle Scholar
  18. 18.
    Elashmawi IS (2007) Materials Chemistry and Physics 107:96CrossRefGoogle Scholar
  19. 19.
    Popielarz R, Chiang CK, Nozaki R, Obrzut J (2001) Macromolecules 34:5910CrossRefGoogle Scholar
  20. 20.
    Li JY (2003) Phys Rev Lett 90:217601CrossRefGoogle Scholar
  21. 21.
    Seanoe DA (1982) Electrical Properties of Polymers. Academic Press, New YorkGoogle Scholar
  22. 22.
    Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2003) APL 76(25):3804Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ye Wang
    • 1
  • Jingwen Wang
    • 1
    Email author
  • Fang Wang
    • 1
  • Shuqin Li
    • 1
  • Jun Xiao
    • 1
  1. 1.School of Material Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingP.R. China

Personalised recommendations