Advertisement

Polymer Bulletin

, Volume 62, Issue 4, pp 525–538 | Cite as

Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behaviour

  • Anca Bejenariu
  • Marcel Popa
  • Virginie Dulong
  • Luc Picton
  • Didier Le CerfEmail author
Original Paper

Abstract

Xanthan (Xan) is a biocompatible and biodegradable polysaccharide with a promising potential as substrate for controlled drug delivery applications. Xan based hydrogels were synthesized in alkaline medium using trisodium trimetaphosphate (STMP) as crosslinking agent. Hydrogels with various crosslinking agent/polymer ratios were synthesized and subsequently characterized by the means of elemental analysis and dynamic swelling degree, model compound loading and releasing behaviour. Two physical parameters (crosslinking density and phosphate charge) are manifesting antagonistic actions by stiffening or disrupting the three-dimensional macromolecular ensemble. The highest swelling degree was obtained using an intermediate STMP:Xan ratio in which case the opposing effects of the two forces are well balanced. The synthesized networks are pH sensitive. In acid and alkaline media the swelling degrees are lower by comparison to neutral pH. The entrapping and releasing behaviour of the newly synthesized xanthan networks were studied using methylene blue as a cationic model molecule. The releasing kinetics present a first-order model.

Keywords

Polysaccharide Xanthan Hydrogel Trisodium trimetaphosphate pH dependance 

Notes

Acknowledgment

This research was supported by the Région Haute Normandie (MILC grant).

References

  1. 1.
    Le Cerf D, Irinei F, Muller G (1990) Solution properties of gum exudates from Sterculia urens (karaya gum). Carbohydr Polym 13(4):375CrossRefGoogle Scholar
  2. 2.
    Simon S, Picton L, Le Cerf D, Muller G (2005) Adsorption of amphiphilic polysaccharides onto polystyrene latex particles. Polymer 46(11):3700CrossRefGoogle Scholar
  3. 3.
    Henni-Silhadi W, Deyme M, Boissonnade MM, Appel M, Le Cerf D, Picton L, Rosilio V (2007) Enhancement of the solubility and efficacy of poorly water-soluble drugs by hydrophobically-modified polysaccharide derivatives. Pharm Res 24(12):2317CrossRefGoogle Scholar
  4. 4.
    Papagianni M, Psomas SK, Batsilas L (2001) Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem 37:73CrossRefGoogle Scholar
  5. 5.
    Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67:586CrossRefGoogle Scholar
  6. 6.
    Jansson PE, Kenne L, Lindberg B (1975) Structure of extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 45:275CrossRefGoogle Scholar
  7. 7.
    Melton LD, Mindt L, Rees DA (1976) Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies. Carbohydr Res 46:245CrossRefGoogle Scholar
  8. 8.
    Moorhouse R, Walkinshaw MD, Arnott S (1977) Xanthan gum—molecular conformation and interactions. In: Sandford PA, Lasking A (eds) Extracelular microbial polysaccharides: a symposium. ACS Symposium series, Washington, p 90Google Scholar
  9. 9.
    Ogawa K, Yui T (1998) X-ray diffraction study of polysaccharides. In: Dumitriu S (ed) Polysaccharides: structural, diversity and functional versatility. Marcel Dekker, New York, p 101Google Scholar
  10. 10.
    Stokke BT, Elgsaeter A, Skjrak-Brjek G, Smidsrød O (1987) The molecular size and shape of xanthan, sylinan, bronchial mucin, alginate, and amylose as revealed by electron microscopy. Carbohydr Res 160:13CrossRefGoogle Scholar
  11. 11.
    Capron I, Brigand G, Muller G (1997) About the native and renatured conformation of xanthan exopolysaccharide. Polymer 38:5289CrossRefGoogle Scholar
  12. 12.
    Stokke BT, Christensen B, Smidsrod O (1998) Macromolecular properties of xanthan. In: Dumitriu S (ed) Polysaccharides. Structural diversity and functional versatility. Marcel Dekker, New York, p 433Google Scholar
  13. 13.
    Alupei IC, Popa M, Hamcerencu M, Abadie MJM (2002) Superabsorbant hydrogels based on xanthan and poly(vinyl alcohol) 1. The study of the swelling properties. Eur Polym J 38:2313CrossRefGoogle Scholar
  14. 14.
    Mocanu G, Merle L, Carpov A, Muller G (2000) Immobilisation de biomolécules dans des microparticules de carboxyméthylcelluloses “hydrophobiquement modifiées”. Eur Polym J 36:2381CrossRefGoogle Scholar
  15. 15.
    Giri AK (1997) Genetic toxicology of epichlorohydrin: a review. Mutat Res Rev Mutat Res 386:25Google Scholar
  16. 16.
    Woo K, Seib PA (1997) Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr Polym 33:263CrossRefGoogle Scholar
  17. 17.
    Kasemsuwan T, Bailey T, Jane J (1998) Preparation of clear noodles with mixtures of tapioca and high-amylose starches. Carbohydr Polym 32:301CrossRefGoogle Scholar
  18. 18.
    Muhammad K, Hussin F, Ghazali YC, Kennedy JF (2000) Effect of pH on phosphorylation of sago starch. Carbohydr Polym 42:85CrossRefGoogle Scholar
  19. 19.
    Gliko-Kabir I, Yagen B, Penhasi A, Rubinstein A (2000) Phosphated crosslinked guar for colon-specific drug delivery: I. Preparation and physicochemical character. J Control Release 63:121CrossRefGoogle Scholar
  20. 20.
    Dulong V, Lack S, Le Cerf D, Picton L, Vannier JP, Muller G (2004) Hyaluronan-based hydrogels particles prepared by crosslinking with trisodium trimetaphosphate. Synthesis and characterization. Carbohydr Polym 57:1CrossRefGoogle Scholar
  21. 21.
    Lack S, Dulong V, Le Cerf D, Picton L, Argillier JF, Muller G (2004) Hydrogels based on pullulan crosslinked with sodium trimetaphosphate (STMP): rheological study. Polym Bull 52:429CrossRefGoogle Scholar
  22. 22.
    Mocanu G, Mihai D, Picton L, Le Cerf D, Muller G (2002) Associative pullulan gels and their interaction with biological active substances. J Control Release 83(1):41CrossRefGoogle Scholar
  23. 23.
    Lack S, Dulong V, Picton L, Le Cerf D, Condamine E (2007) High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism. Carbohydr Res 342:943CrossRefGoogle Scholar
  24. 24.
    Sang Y, Prakash O, Seib PA (2007) Characterization of phosphorylated cross-linked resistant starch by 31P nuclear magnetic resonance (31P NMR) spectroscopy. Carbohydr Polym 67(2):201CrossRefGoogle Scholar
  25. 25.
    Bejenariu A, Popa M, Le Cerf D, Picton L (2003) Stiffness xanthan hydrogels: synthesis, swelling characteristics and controlled release properties. Polym Bull 61:631CrossRefGoogle Scholar
  26. 26.
    Hamcerencu M, Desbrieres J, Popa M, Khoukh A, Riess G (2007) New unsaturated derivatives of xanthan gum: synthesis and characterization. Polymer 48:1921CrossRefGoogle Scholar
  27. 27.
    Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv Drug Deliv Rev 58(12–13):1274CrossRefGoogle Scholar
  28. 28.
    Hadjiioannou TP, Koupparis CGD, Macheras MA, Panayotis E (1993) In: Quantitative calculations in pharmaceutical practice and research. VCH Weinhimi, New York, p 461Google Scholar
  29. 29.
    Bourne DWA (2002) Pharmacokinetics. Drugs and the pharmaceutical sciences. In: Banker GS, Rhodes CT (eds) Modern pharmaceutics, vol 121, 4th edn. Marcel Dekker, New York, p 67Google Scholar
  30. 30.
    Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52(12):1145CrossRefGoogle Scholar
  31. 31.
    Hixson AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation. I. Theoretical consideration. J Ind Eng Chem 3:923CrossRefGoogle Scholar
  32. 32.
    Talukdar MM, Kinget R (1995) Swelling and drug release behaviour of xanthan gum matrix tablets. Int J Pharm 120:63CrossRefGoogle Scholar
  33. 33.
    Brannon-Peppas L, Peppas NA (1990) Equilibrium swelling behaviour of pH-sensitive hydrogels. Chem Eng Sci 46:715CrossRefGoogle Scholar
  34. 34.
    Brannon-Peppas L, Peppas NA (1991) Time-dependent response of ionic polymer networks to pH and ionic strength changes. Int J Pharm 70:53CrossRefGoogle Scholar
  35. 35.
    Bettini R, Colombo P, Peppas NA (1995) Solubility effects on drug transport through pH-sensitive, swelling-controlled release systems: transport of theophylline and metoclopramide monohydrochloride. J Control Release 37(1–2):105CrossRefGoogle Scholar
  36. 36.
    Mocanu G, Mihaï D, Le Cerf D, Picton L, Muller G (2003) Synthesis of new associative gel microspheres from carboxymethyl pullulan and their interactions with lysozyme. Eur Polym J 40(2):283CrossRefGoogle Scholar
  37. 37.
    Dulong V, Le Cerf D, Picton L, Muller G (2006) Carboxymethylpullulan hydrogels with a ionic and/or amphiphilic behavior: swelling properties and entrapment of cationic and/or hydrophobic molecules. Colloids Surf A 274:163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Anca Bejenariu
    • 1
    • 2
  • Marcel Popa
    • 1
  • Virginie Dulong
    • 2
  • Luc Picton
    • 2
  • Didier Le Cerf
    • 2
    Email author
  1. 1.Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic PolymersTechnical University “Gh. Asachi” IasiIasiRomania
  2. 2.FRE 3101 & FR 3038 CNRS Polymères Biopolymères SurfacesUniversity of RouenMont Saint AignanFrance

Personalised recommendations