Polymer Bulletin

, Volume 59, Issue 6, pp 731–737 | Cite as

Star-Shaped Poly(2-methyl-2-oxazoline) Using by Reactive Bromoethyl Group Modified Calix[4]resorcinarene as a Macrocyclic Initiator

  • Jarunee Jeerupan
  • Tomoki Ogoshi
  • Sachi Hiramitsu
  • Kenji Umeda
  • Tadamasa Nemoto
  • Gen-ichi Konishi
  • Tada-aki Yamagishi
  • Yoshiaki NakamotoEmail author


Star-shaped poly(2-methyl-2-oxazoline) (POZO) was prepared by ring-opening polymerization of 2-methyl-2-oxazoline from a novel calix[4]resorcinarene with reactive bromoethyl groups (8Br-CX4) as an initiator. The core-first method, which uses an active multifunctional core to initiate growth of polymer chains, was applied for synthesis of star-shaped POZO based on 8Br-CX4. The obtained star-shaped POZOs were characterized by 1H NMR, 13C NMR, FT-IR and DSC. From 1H NMR, DLS and fluorescence measurements, the star-shaped POZOs formed nanometer scale micelles in aqueous media composed of hydrophobic calix[4]resorcinarene moieties and hydrophilic POZO groups.


Pyrene Dynamic Light Scattering Star Polymer Macrocyclic Compound Bromoethyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gutsche CD (1983) Acc Chem Res 16:161Google Scholar
  2. 2.
    Gutsche CD (1989) Calixarenes. The Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Vicens J, Bömer V (1991) Calixarenes: A Versatile Class of Macrocyclic Compounds. Kluwer Academic Publishers, DordrechtGoogle Scholar
  4. 4.
    Yang Y, Swager TM (2006) Macromolecules 39:2013Google Scholar
  5. 5.
    Liu Y, Li L, Fan Z, Zhang HY, Wu X, Guan XD, Liu SX (2002) Nano Lett 2:257Google Scholar
  6. 6.
    Gutsche CD, Dhawan B, Na KH, Muthukrishnan R (1981) J Am Chem Soc 103:3782Google Scholar
  7. 7.
    Danil de Namor AF, Cleverley RM, Zapata-Ormahea ML (1998) Chem Rev 98:2495Google Scholar
  8. 8.
    Krause T, Gruner M, Kuckling D, Habicher WD (2004) Tetrahedron Lett 45:9635Google Scholar
  9. 9.
    Kamigaito M, Ando T, Sawamoto M (2001) Chem Rev 101:3689Google Scholar
  10. 10.
    Saegusa T, Chujo Y (1990) Makromol Chem Macromol Symp 33:31Google Scholar
  11. 11.
    Lepoittevin BL, Matmour R, Francis R, Taton D, Gnanou Y (2005) Macromolecules 38:3120Google Scholar
  12. 12.
    Angot S, Murthy KS, Taton D, Gnanou Y (2000) Macromolecules 33:7261Google Scholar
  13. 13.
    Angot S, Murthy KS, Taton D, Gnanou Y (1998) Macromolecules 31:7218Google Scholar
  14. 14.
    Hoegberg AGS (1980) J Org Chem 45:4498Google Scholar
  15. 15.
    Yun J, Faust R, Szulágyi LS, Kéki S, Zsuga M (2003) Macromolecules 36:1717Google Scholar
  16. 16.
    Lee SC, Chang Y, Yoon JS, Kim C, Kwon IC, Kim YH, Jeong SY (1999) Macromolecules 32:1847Google Scholar
  17. 17.
    Li D, Suzuki T, Konishi G, Yamagishi T, Nakamoto Y (2002) Polym Bull 48:423Google Scholar
  18. 18.
    Gutsche CD, Dhawan B, Levine JA, Na KH, Bauer LJ (1983) Tetrahedron 39:409Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jarunee Jeerupan
    • 1
  • Tomoki Ogoshi
    • 1
  • Sachi Hiramitsu
    • 1
  • Kenji Umeda
    • 1
  • Tadamasa Nemoto
    • 2
  • Gen-ichi Konishi
    • 2
  • Tada-aki Yamagishi
    • 1
  • Yoshiaki Nakamoto
    • 1
    Email author
  1. 1.Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  2. 2.Department of Organic & Polymeric Materials, Graduate School of EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations