Advertisement

Polymer Bulletin

, Volume 58, Issue 2, pp 435–445 | Cite as

Shrinking of Chemically Cross-Linked Polymer Networks in the Postgel Region

  • Atoosa Maleki
  • Neda Beheshti
  • Kaizheng Zhu
  • Anna-Lena KjøniksenEmail author
  • Bo Nyström
Article

Summary

In this paper, the syneresis behaviors in the post-gel region of hydrogels of hydroxyethylcellulose (HEC) and its hydrophobically modified analogue (HM-HEC) were investigated by means of a new high precision swell-ratio-tester. The gels were prepared by cross-linking cellulose ether derivatives with divinyl sulfone (DVS) in alkaline solution at various cross-linker concentrations and temperatures. Increasing the cross-linker density promotes a faster shrinkage of the gel, and a more compressed gel. The compression of the 1 wt % HEC gel starts at an earlier time at 40 °C than at 25 °C, because the increased mobility of the chains is more favorable to a faster formation of interpolymer cross-links. The results from the deswelling measurements show that the hydrophobic modification of the polymer yields less contracted gels. This novel finding is ascribed to the fact that some of the hydroxyl groups for the formation of intermolecular cross-links are deactivated through the incorporated hydrophobic groups at these sites.

Keywords

Deswelling syneresis hydrogels hydroxyethylcellulose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajpai SK (2001) J. Appl. Polym. Sci. 80:2782.Google Scholar
  2. 2.
    Burchard W, Ross-Murphy SB (eds) (1990) Physical Networks: Polymers and Gels, Elsevier Science Publishers Ltd.: Cambridge, UK.Google Scholar
  3. 3.
    Aharoni SM (ed) (1992) Synthesis, Characterization, and Theory of Polymeric Networks and Gels, Plenum Press: New York.Google Scholar
  4. 4.
    Cohn Addad JP (ed) (1996) Physical Properties of Polymeric Gels, Wiley: Chichester.Google Scholar
  5. 5.
    Norisuye T, Kida Y, Masui N, Tran-Cong-Miyata Q (2003) Macromolecules 36:6202.Google Scholar
  6. 6.
    Malmsten M (2002) Surfactants and Polymers in Drug Delivery, Drugs and the Pharmaceutical Sciences, Marcel Dekker: New York, Vol.122.Google Scholar
  7. 7.
    Tanaka T (1978) Phys. Rev. Lett. 40:820.Google Scholar
  8. 8.
    Tanaka T, Fillmore D, Sun S, Nishio I, Swislow G, Shah A (1980) Phys. Rev. Lett. 45:1636.Google Scholar
  9. 9.
    Ilavsky M (1982) Macromolecules 15:782.Google Scholar
  10. 10.
    Hirokawa Y, Tanaka T.J (1984) Chem. Phys. 81:6379.Google Scholar
  11. 11.
    Katayama S, Hirokawa Y, Tanaka T (1984) Macromolecules 17:2641.Google Scholar
  12. 12.
    Hoffman AS (1987) J. Control. Rel. 6:297.Google Scholar
  13. 13.
    Xue W, Champ S, Huglin MB (2001) Polymer 42:2247.Google Scholar
  14. 14.
    Okajima T, Harada I, Nishio K, Hirotsu S (2002) J. Chem. Phys. 116:9068.Google Scholar
  15. 15.
    Goycoolea FM, Heras A, Aranaz I, Galed G, Fernández-Valle M.E, Argüelles-Monal W (2003) Macromol. Bioscience 3:612.Google Scholar
  16. 16.
    Takahashi K, Takigawa T, Masuda T (2004) J. Chem. Phys. 120:2972.Google Scholar
  17. 17.
    Xue W, Champ S, Huglin MB, Jones TGJ (2004) Eur. Polym. J. 40:703.Google Scholar
  18. 18.
    Bag DS, Sarfaraz A, Mathur GN (2004) Smart Mater. Struct. 13:1258.Google Scholar
  19. 19.
    Zhao Y, Su H, Fang L, Tan T (2005) Polymer 46:5368.Google Scholar
  20. 20.
    Ohmine I, Tanaka T (1982) J. Chem. Phys. 77:5725.Google Scholar
  21. 21.
    Ricka J, Tanaka T (1984) Macromolecules 17:2916.Google Scholar
  22. 22.
    Park TG, Hoffman AS (1993) Macromolecules 26:5045.Google Scholar
  23. 23.
    Rodríguez E, Katime I (2003) J. App. Polym. Sci. 90:530.Google Scholar
  24. 24.
    Edgecombe S, Schneider S, Linse P (2004) Macromolecules 37:10089.Google Scholar
  25. 25.
    Shibayama M, Uesaka M, Shiwa Y (1996) J. Chem. Phys. 105:4350.Google Scholar
  26. 26.
    Harada T, Sato H, Hirashima Y, Igarashi K, Suzuki A, Goto M, Kawamura N, Tokita M (2004) Colloids Surf. B: Biointerfaces 38:209.Google Scholar
  27. 27.
    Eisenberg SR, Grodzinski AJ (1984) J. Membr. Sci. 19:173.Google Scholar
  28. 28.
    Liu S, Weaver JVM, Save M, Armes SP (2002) Langmuir 18:8350.Google Scholar
  29. 29.
    Maleki A, Kjøniksen AL, Knudsen KD, Nyström B (2006) Polym. Int. 55:365.Google Scholar
  30. 30.
    Maleki A, Kjøniksen AL, Nyström B (2005) J. Phys. Chem. B. 109:12329.Google Scholar
  31. 31.
    Maleki A Intensity Light Scattering Measurements on Dilute HEC Solutions. Unpublished data.Google Scholar
  32. 32.
    Miyajim T, Kita K, Kamitani H, Yamaki K (1999) US Patent 5891450.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Atoosa Maleki
    • 1
  • Neda Beheshti
    • 1
  • Kaizheng Zhu
    • 1
  • Anna-Lena Kjøniksen
    • 1
    Email author
  • Bo Nyström
    • 1
  1. 1.Department of ChemistryUniversity of OsloOsloNorway

Personalised recommendations