Polymer Bulletin

, Volume 58, Issue 1, pp 93–104 | Cite as

Polycyanurate networks modified by polyoxytetramethylene glycol

  • Sotiria Kripotou
  • Polycarpos Pissis
  • Evaggelia Kontou
  • Alexander M. Fainleib
  • Olga Grigoryeva
  • Irina Bey
Article

Summary

We report results obtained within a collaborative project dealing with the preparation of hybrid polycyanurate/polyoxytetramethylene glycol (PCN/PTMG) networks and the investigation of their structure-property relationships by a variety of experimental techniques. The hybrids were prepared from PCN and PTMG (molar mass 1.000 g/mol) with 10, 20, 30 and 40 wt% PTMG. The degree of incorporation of PTMG into the PCN network was determined by gel fraction measurements. WAXS and SAXS studies had indicated that the materials under investigation are amorphous and exhibit nanostructural heterogeneity, which increases with increasing amount of PTMG. Stress-strain measurements show improvement of the mechanical properties for PTMG contents of 30 and 40%. The focus in this paper is on the detailed investigation of the α relaxation associated with the glass transition in wide ranges of frequency and temperature by dielectric techniques. A single α relaxation was observed in all the compositions shifting systematically to lower temperatures/higher frequencies with increasing PTMG content. The results were systematically analyzed in terms of time scale and relaxation strength of the response and are discussed in terms of plasticization, presence of nanostructural heterogeneities and hybridization. Co-operativity of the α relaxation, quantified in terms of fragility, was found to decrease with increasing amount of PTMG, in correlation with increasing level of nanoheterogenity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamerton I (1994) Chemistry and Technology of Cyanate Ester Resins. Chapman & Hall, GlasgowGoogle Scholar
  2. 2.
    Nair CPR, Mathew D, Ninan KN (2000) Adv Polym Sci 155:1Google Scholar
  3. 3.
    Georjon O, Galy J, Pascault JP (1993) J Appl Polym Sci 49:1441Google Scholar
  4. 4.
    Pascault JP (1995) Macromol Chem Macromol Symp 93:43Google Scholar
  5. 5.
    Cao ZQ, Mechin F, Pascault JP (1994) Polym Int 34:41Google Scholar
  6. 6.
    Bershtein VA, Egorova LM, Ryzhov VP, Yakushev PN, Fainleib A, Shantalii TA, Pissis P (2001) J Macromol Sci Phys B40:105Google Scholar
  7. 7.
    Pissis P, Georgoussis G, Bershtein VA, Neagu E, Fainleib AM (2002) J Non-Cryst Solids 305:150Google Scholar
  8. 8.
    Georgoussis G, Kyritsis A, Bershtein VA, Fainleib A, Pissis P (2000) J Polym Sci Part B Polym Phys 38:3070Google Scholar
  9. 9.
    Fainleib A, Hourston D, Grigoryeva O, Shantalii T, Sergeeva L (2001) Polymer 42:8361Google Scholar
  10. 10.
    Fainleib A, Grigoryeva O, Hourston D (2001) Macromol Symp 164:429Google Scholar
  11. 11.
    Fainleib A, Grigoryeva O, Hourston D (2001) Int J Polym Mat 51:57Google Scholar
  12. 12.
    Bershtein VA, David L, Egorov VM, Fainleib A, Grigoryeva O, Bey I, Yakushev PN (2005) J Polym Sci Part B Polym Phys, in pressGoogle Scholar
  13. 13.
    Hamerton I, Hay JN (1998) High Perform Polym 10:163Google Scholar
  14. 14.
    van Turnhout J (1980) Thermally stimulated discharge of polymer electrets. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. 15.
    Kremer F, Schoenhals A (2003) Broadband Dielectric Spectroscopy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Georjon O, Schwach G, Gerard JF, Galy J (1997) J Polym Eng Sci 37:1606Google Scholar
  17. 17.
    Wetton R, Williams G (1965) Trans Faraday Soc 61:2132Google Scholar
  18. 18.
    Donth E (2001) The Glass transition. Relaxation dynamics in liquids and disordered materials. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 19.
    Johari GP, Goldstein MJ (1970) J Chem Phys 53:2372Google Scholar
  20. 20.
    Pissis P, Kyritsis A, Meseguer Duenas JM, Monleon Pradas M, Torres Escuriola D, Gallego Ferrer G, Gomez Ribelles JL (2001) Macromol Symp 171:151Google Scholar
  21. 21.
    Kyritsis A, Gomez Ribelles JL, Meseguer Duenas JM, Soler Campillo N, Gallego Ferrer G, Monleon Pradas M (2004) Macromolecules 37:446Google Scholar
  22. 22.
    Adam G, Gibbs JH (1965) J Chem Phys 43:139Google Scholar
  23. 23.
    Beiner M (2001) Macromol Rapid Commun 22:869Google Scholar
  24. 24.
    Angell CA (1991) J Non-Cryst Solids 131-133:13Google Scholar
  25. 25.
    Richert R, Angell CA (1998) J Chem Phys 108:9016Google Scholar
  26. 26.
    Cowie JMG, Harris S, Gomez Ribelles JL, Meseguer JM, Romero F, Torregrosa C (1999) Macromolecules 32:4430Google Scholar
  27. 27.
    Fox TG (1956) Bull Am Phys Soc 1:123Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sotiria Kripotou
    • 1
  • Polycarpos Pissis
    • 1
  • Evaggelia Kontou
    • 2
  • Alexander M. Fainleib
    • 3
  • Olga Grigoryeva
    • 3
  • Irina Bey
    • 3
  1. 1.Department of PhysicsNational Technical University of AthensAthensGreece
  2. 2.Department of MechanicsNational Technical University of AthensAthensGreece
  3. 3.Institute of Macromolecular ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations