Advertisement

Polymer Bulletin

, Volume 58, Issue 1, pp 185–190 | Cite as

Three different types of quasi-model networks: synthesis by group transfer polymerization and characterization

  • Aggeliki I. Triftaridou
  • Demetris Kafouris
  • Maria Vamvakaki
  • Theoni K. Georgiou
  • Theodora C. Krasia
  • Efrosyni Themistou
  • Natalia Hadjiantoniou
  • Costas S. PatrickiosEmail author
Article

Summary

Group transfer polymerization (GTP) chemistry was employed for the preparation of polymethacrylate networks of controlled structure (quasi-model networks) of three different types: (a) regular quasi-model networks, in which all polymer chains were linked at their ends, leaving, in principle, no free chain ends, (b) crosslinked star polymer quasi-model networks, in which star polymers were interlinked via half of their chains, letting the other half free (dangling), and (c) shell-crosslinked polymer quasi-model networks, in which the outer part of the network contained polymer arms (dangling chains). Combination of hydrophilic and hydrophobic monomers led to amphiphilic networks whose aqueous swelling behavior was characterized gravimetrically.

Keywords

EGDMA Network Type DMAEMA Star Polymer Hydrophobic Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dušek K (1967) Adv Polym Sci 5:113Google Scholar
  2. 2.
    Dušek K (1969) Adv Polym Sci 6:1Google Scholar
  3. 3.
    Tanaka T (1981) Sci Am 244:24Google Scholar
  4. 4.
    Buchholz FL, Graham AT (1998) Eds. Modern Superabsorbent Polymer Technology, Wiley: New YorkGoogle Scholar
  5. 5.
    Hild G (1998) Prog Polym Sci 23:1019Google Scholar
  6. 6.
    Simmons MR, Yamasaki EN, Patrickios CS (2000) Polymer 41:8523Google Scholar
  7. 7.
    Webster OW (1991) Science 251:887Google Scholar
  8. 8.
    Webster OW, Hertler WR, Sogah DY, Farnham WB, RajanBabu TV (1983) J Am Chem Soc 105:5706Google Scholar
  9. 9.
    Webster OW (2004) Adv Polym Sci 167:1Google Scholar
  10. 10.
    Steinbrecht K, Bandermann F (1989) Makromol Chem 190:2183Google Scholar
  11. 11.
    Dicker IB, Cohen GM, Farnham WB, Hertler WR, Laganis ED, Sogah DY (1990) Macromolecules 23:4034Google Scholar
  12. 12.
    Hertler WR (1994) Macromol Symp 88:55Google Scholar
  13. 13.
    Simmons MR, Yamasaki EN, Patrickios CS (2000) Macromolecules 33:3176Google Scholar
  14. 14.
    Triftaridou AI, Hadjiyannakou SC, Vamvakaki M, Patrickios CS (2002) Macromolecules 35:2506Google Scholar
  15. 15.
    Vamvakaki M, Hadjiyannakou SC, Loizidou E, Patrickios CS, Armes SP, Billingham NC (2001) Chem Mater 13:4738Google Scholar
  16. 16.
    Vamvakaki M, Patrickios CS (2002) Chem Mater 14:1630Google Scholar
  17. 17.
    Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Chem Rev 101:3747Google Scholar
  18. 18.
    Thurmond KB, Kowalewski T, Wooley KL (1996) J Am Chem Soc 118:7239Google Scholar
  19. 19.
    Patrickios CS, Georgiou TK (2003) Curr Opin Colloid Interface Sci 8:76Google Scholar
  20. 20.
    Siegel RA, Firestone BA (1988) Macromolecules 21:3254Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Aggeliki I. Triftaridou
    • 1
  • Demetris Kafouris
    • 1
  • Maria Vamvakaki
    • 2
  • Theoni K. Georgiou
    • 1
  • Theodora C. Krasia
    • 1
    • 3
  • Efrosyni Themistou
    • 1
  • Natalia Hadjiantoniou
    • 1
  • Costas S. Patrickios
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of CyprusNicosiaCyprus
  2. 2.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece
  3. 3.Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations