Advertisement

Multiparton interactions in photoproduction at HERA

  • J. M. Butterworth
  • J. R. Forshaw
  • M. H. Seymour
Article

Abstract

The high energy photoproduction of jets is being observed at theep collider, HERA. It may be that the HERA centre-of-mass energy is sufficiently large that the production of more than one pair of jets perep collision becomes possible, owing to the large number density of the probed gluons. We construct a Monte Carlo model of such multiparton interactions and study their effects on a wide range of physical observables. The conclusion is that multiple interactions could have very significant effects upon the photoproduction final state and that this would for example make extractions of the gluon density in the photon rather difficult. Total rates for the production of many (i.e.≥3) jets could provide direct evidence for the presence of multiple interactions, although parton showering and hadronization significantly affect low transverse energy jets.

Keywords

Multiple Scattering Parton Distribution Parton Shower Multiple Interaction ZEUS Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H1 Collaboration, T. Ahmed et al., Phys. Lett. B297 (1992) 205.ADSGoogle Scholar
  2. 1a.
    ZEUS Collaboration, M. Derrick et al., Phys. Lett. B297 (1992) 404.ADSGoogle Scholar
  3. 2.
    ZEUS Collaboration, M. Derrick et al., Phys. Lett. B322 (1994) 287.ADSGoogle Scholar
  4. 3.
    ZEUS Collaboration, M. Derrick et al., Phys. Lett B348 (1995) 665.ADSGoogle Scholar
  5. 4.
    J.R. Forshaw and R.G. Roberts, Phys. Lett. B319 (1993) 539.ADSGoogle Scholar
  6. 5.
    M. Klasen and G. Kramer, DESY 95-159; DESY 95-226.Google Scholar
  7. 6.
    ZEUS Collaboration, M. Derrick et al., Phys. Lett. B316 (1993) 412. H1 Collaboration, I. Abt et al., Nucl. Phys. B407 (1993) 515.ADSGoogle Scholar
  8. 6a.
    ZEUS Collaboration, M. Derrick et al., Z. Phys. C65 (1995) 379.ADSGoogle Scholar
  9. 7.
    J.C. Collins and G.A. Ladinsky, Phys. Rev. D43 (1991) 2847.ADSGoogle Scholar
  10. 8.
    J.R. Forshaw and J.K. Storrow, Phys. Lett. B268 (1991) 116; erratum B276.ADSGoogle Scholar
  11. 9.
    R.S. Fletcher et al., Phys. Rev. D45 (1992) 337.MathSciNetADSGoogle Scholar
  12. 10.
    G. Marchesini et al., Comp. Phys. Comm. 67 (1992) 465.CrossRefADSGoogle Scholar
  13. 11.
    H1 Collaboration, T. Ahmed et al., Z. Phys. C69 (1995) 27.Google Scholar
  14. 11a.
    ZEUS Collaboration, M. Derrick et al., Z. Phys. C63 (1994) 391.ADSGoogle Scholar
  15. 12.
    A. Donnachie and P.V. Landshoff, Phys. Lett. B296 (1992) 227.ADSGoogle Scholar
  16. 13.
    J.R. Forshaw and J.K. Storrow, Phys. Rev. D46 (1992) 4955; Phys. Lett. B321 (1994) 151; K. Honjo et al., Phys. Rev. D48 (1993) 1048. R.S. Fletcher, T.K. Gaisser and F. Halzen, Phys. Lett. B298 (1993) 442. G.A. Schuler and T. Sjöstrand, Nucl. Phys. B407 (1993) 539. M. Drees, hep-ph/9406414, in the proceedings of the Workshop on Two-Photon Physics at LEP and HERA, Lund, May 1994.ADSGoogle Scholar
  17. 14.
    M. Drees and R. Godbole, Pramana J. Phys. 41 (1993) 83.CrossRefADSGoogle Scholar
  18. 15.
    L. Durand et al., Phys. Rev. D47 (1993) R4815.Google Scholar
  19. 16.
    J.M. Butterworth and J.R. Forshaw, J. Phys. G19 (1993) 1657; J. M. Butterworth and J.R. Forshaw, RAL 94-088, in the proceedings of the Workshop on Two-Photon Physics at LEP and HERA, Lund, May 1994.ADSGoogle Scholar
  20. 17.
    J.M. Butterworth et al., CERN-TH/95-83, to appear in the proceedings of the ‘Photon 95’ conference, Sheffield, April 1995.Google Scholar
  21. 18.
    T. Sjöstrand and M. van Zijl, Phys.Rev. D36, 2019 (1987).ADSGoogle Scholar
  22. 19.
    L.E. Gordon and J.K. Storrow, Z. Phys. C56 (1992) 307.ADSGoogle Scholar
  23. 20.
    M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 127; M. Glück and E. Reya, Dortmund DO-TH 93/27 (1993); M. Glück, E. Reya and A. Vogt, Phys. Lett B306 (1993) 391; M. Glück, E. Reya and A. Vogt, Z. Phys. C67 (1995) 433.ADSGoogle Scholar
  24. 21.
    V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438; L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1974) 94; Y.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641; G.Altarelli and G.Parisi, Nucl. Phys. B126 (1977) 298.Google Scholar
  25. 22.
    G. Marchesini and B.R. Webber, Nucl. Phys. B238 (1984) 1; Nucl. Phys. B310 (1988) 461.CrossRefADSGoogle Scholar
  26. 23.
    T. Sjöstrand, Phys. Lett. 157B (1985) 321.ADSGoogle Scholar
  27. 24.
    B.R. Webber, Nucl. Phys. B238 (1984) 492.CrossRefADSGoogle Scholar
  28. 25.
    ZEUS Collaboration, M. Derrick et al., Phys. Lett. B322 (1994) 287.ADSGoogle Scholar
  29. 26.
    H. Abramowicz, K. Charchula and A. Levy Phys. Lett. B269 (1991) 458.ADSGoogle Scholar
  30. 27.
    M. Glück, E. Reya and A. Vogt, Phys. Rev. D46 (1992) 1973; Phys. Rev. D45 (1992) 3986.ADSGoogle Scholar
  31. 28.
    H1 Collaboration, S. Aid et al., DESY 95-219.Google Scholar
  32. 29.
    M. Klasen, G. Kramer and S.G. Salesch, Z. Phys C68 (1995) 113.ADSGoogle Scholar
  33. 30.
    R. Engel, Z. Phys. C66 (1995) 203.MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. M. Butterworth
    • 1
  • J. R. Forshaw
    • 2
  • M. H. Seymour
    • 3
  1. 1.University College LondonLondonUK
  2. 2.University of ManchesterManchesterUK
  3. 3.TH Division, CERNGenève 23Switzerland

Personalised recommendations