The mellin transform technique for the extraction of the gluon density

  • D. Graudenz
  • M. Hampel
  • A. Vogt
  • C. Berger


A new method is presented to determine the gluon density in the proton from jet production in deeply inelastic scattering. By using the technique of Mellin transforms not only for the solution of the scale evolution equation of the parton densities but also for the evaluation of scattering cross sections, the gluon density can be extracted in next-to-leading order QCD. The method described in this paper is, however, more general, and can be used in situations where a repeated fast numerical evaluation of scattering cross sections for varying parton distribution functions is required.


Support Point Parton Distribution Function Parton Density Lead Order Gluon Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Mendez, Nucl. Phys. B145 (1978) 199.CrossRefADSGoogle Scholar
  2. 2.
    H1 Collaboration, S. Aid et al., preprint DESY 95-086 (1995).Google Scholar
  3. 3.
    S. Catani, Y.L. Dokshitzer and B.R. Webber, Phys. Lett. B285 (1992) 291.ADSGoogle Scholar
  4. 4.
    B.R. Webber, J. Phys. G19 (1993) 1567.ADSGoogle Scholar
  5. 5.
    R. Courant and D. Hilbert, Methoden der Mathematischen Physik, Springer Verlag, Berlin, 1924.zbMATHGoogle Scholar
  6. 6.
    M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 127.ADSGoogle Scholar
  7. 7.
    M. Glück, E. Reya and A. Vogt, Z. Phys. C 67 (1995) 433.ADSGoogle Scholar
  8. 8.
    M. Glück, E. Reya and A. Vogt, Phys. Rev. D45 (1992) 3968, D46 (1993) 1973.Google Scholar
  9. 9.
    A.D. Martin, W.J. Stirling and R.G. Roberts, Phys. Rev. D50 (1994) 6734, Phys. Lett. B354 (1995) 155.ADSGoogle Scholar
  10. 10.
    M. Glück, E. Reya and A. Vogt, Z. Phys. C48 (1990) 471.Google Scholar
  11. 11.
    M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions, National Bureau of Standards, 1964.Google Scholar
  12. 12.
    D. Graudenz, PROJET 4.13 manual, preprint CERN-TH.7420/94 (November 1994) to appear in Comp. Phys. Comm.Google Scholar
  13. 13.
    D. Graudenz, Phys. Lett. B256 (1991) 518.ADSGoogle Scholar
  14. 14.
    D. Graudenz, Phys. Rev. D49 (1994) 3291.ADSGoogle Scholar
  15. 15.
    D. Graudenz and N. Magnussen, in: Proceedings of the HERA Workshop 1991, DESY (eds. W. Buchmüller, G. Ingelman).Google Scholar
  16. 16.
    JADE Collaboration, W. Bartel et al., Z. Phys. C33 (1986) 23.ADSGoogle Scholar
  17. 17.
    G. Lepage, J. Comput. Phys. 27 (1978) 1992.Google Scholar
  18. 18.
    G. Lepage, Cornell preprint CLNS-80/447 (1980).Google Scholar
  19. 19.
    H1 Collaboration, T. Ahmed et al., Phys. Lett. B346 (1995) 415.ADSGoogle Scholar
  20. 20.
    W.J. Stirling, talk presented on the Workshop on Deep Inelastic Scattering and QCD, Paris, April 1995.Google Scholar
  21. 21.
    W. Vogelsang and A. Vogt, Rutherford Appleton Laboratory preprint CCL-TR-95-004 and preprint DESY 95-096 (1995) to appear in Nucl. Phys. B.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.Theoretical Physics DivisionCERNGeneva 23Switzerland
  2. 2.I. Physikalisches InstitutRWTH AachenAachenGermany
  3. 3.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations