Current trends in applied machine intelligence

  • Bernhard G. HummEmail author
  • Hermann Bense
  • Mario Classen
  • Stefan Geißler
  • Thomas Hoppe
  • Oliver Juwig
  • Adrian Paschke
  • Ralph Schäfermeier
  • Melanie Siegel
  • Frauke Weichhardt
  • Rigo Wenning


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Academy of Medical Sciences (2015) Stratified, personalised or P4 medicine: a new direction for placing the patient at the centre of healthcare and health education (technical report). Academy of Medical Sciences. May 2015. Accessed 23 Sept 2018Google Scholar
  2. 2.
    Bense H, Bodrow W (1995) Objektorientierte und regelbasierte Wissensverarbeitung. Spektrum Akademischer Verlag, HeidelbergzbMATHGoogle Scholar
  3. 3.
    Bense H, Gernhardt B, Haase P, Hoppe T, Hemmje M, Humm B, Paschke A, Schade U, Schäfermeier R, Schmidt M, Siegel M, Vogel T, Wenning R (2016) Emerging trends in corporate semantic web – selected results of the 2016 Dagstuhl workshop on corporate semantic web. Informatik-Spektrum 39(6):474–480Google Scholar
  4. 4.
    Bird S, Klein E, Loper E (2009) Natural language processing with Python. O’Reilly Media, Sebastopol, CAzbMATHGoogle Scholar
  5. 5.
    Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist 5:135–146,, last access: 24.9.2018Google Scholar
  6. 6.
    Bond F, Foster R (2013) Linking and extending an open multilingual wordnet. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, pp 1352–1362Google Scholar
  7. 7.
    Busse J, Humm B, Lübbert C, Moelter F, Reibold A, Rewald M, Schlüter V, Seiler B, Tegtmeier E, Zeh T (2015) Actually, what does “Ontology” mean? A term coined by philosophy in the light of different scientific disciplines. J Comput Informat Technol (CIT) 23(1):29–41, Scholar
  8. 8.
    Chiticariu L, Li Y, Reiss FR (2013) Rule-based information extraction is dead! Long live rule-based information extraction systems! in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Washington, 18–21 October 2013. Association for Computational Linguistics, Stroudsburg, pp 827–832Google Scholar
  9. 9.
    Ege B, Humm B, Reibold A (eds) (2015) Corporate Semantic Web – Wie Anwendungen in Unternehmen Nutzen stiften. Springer, Heidelberg (in German)Google Scholar
  10. 10.
    Fellbaum C (ed) (1998) WordNet: An electronic lexical database. MIT Press, CambridgeGoogle Scholar
  11. 11.
    Harris-Ferrante K (2017) To the Point: Leveraging AI for Success in Digital Insurance. In: Presentation Gartner Symposium ITXPO, Nov. 5–7, 2017, Barcelona, SpainGoogle Scholar
  12. 12.
    Hoppe T, Humm B, Schade U, Heuss T, Hemmje M, Vogel T, Gernhardt B (2015) Corporate semantic web – applications, technology, methodology. Informatik-Spektrum 39(1):57–63, Scholar
  13. 13.
    Hoppe T, Humm BG, Reibold A (eds) (2018) Semantic Applications – Methodology, Technology, Corporate Use. Springer, BerlinGoogle Scholar
  14. 14.
    Humm BG, Walsh P (2018) Personalised clinical decision support for cancer care. In: Hoppe T, Humm BG, Reibold A (eds) Semantic Applications – Methodology, Technology, Corporate Use. Springer, Berlin, pp 125–143CrossRefGoogle Scholar
  15. 15.
    Kirrane S, Wenning R (2018) Compliance using metadata. In: Hoppe T, Humm BG, Reibold A (eds) Semantic Applications – Methodology, Technology, Corporate Use. Springer, Berlin, pp 31–45Google Scholar
  16. 16.
    Manning CD (2015) Computational linguistics and deep learning. Comput Linguist 41(4):701–707MathSciNetCrossRefGoogle Scholar
  17. 17.
    McDonald A, Cranor L (2008) The cost of reading privacy policies. I/S J Law Policy Inf Soc. 2008 Privacy Year in Review issue., last access: 20.11.2018Google Scholar
  18. 18.
    Mikolov T et al (2013) Efficient estimation of word representations in vector space., last access: 24.9.2018Google Scholar
  19. 19.
    Murugan R (2015) Movement towards personalised medicine in the ICU. Lancet Respir Med 3(1):10–12CrossRefGoogle Scholar
  20. 20.
    Pennington J, Socher R, Manning CD (2014) GloVe: Global vectors for word representation. in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 25–29 October 2014, Doha, pp 1532–1543., last access: 23.9.2018Google Scholar
  21. 21.
    Robertson S (2004) Understanding inverse document frequency: On theoretical arguments for IDF. J Doc 60(5):503–520,, last access: 28.8.2018CrossRefGoogle Scholar
  22. 22.
    Ruder S (2018) Repository to track the progress in Natural Language Processing (NLP)., last access: 23.9.2018Google Scholar
  23. 23. (2017) Natural language processing market to reach $22.3 billion by 2025, August 21., last access: 23.9.2018Google Scholar
  24. 24.
    Young T, Hazarika D, Poria S, Cambria E (2017) Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 13(3):55–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Bernhard G. Humm
    • 1
    Email author
  • Hermann Bense
    • 2
  • Mario Classen
    • 3
  • Stefan Geißler
    • 4
  • Thomas Hoppe
    • 5
  • Oliver Juwig
    • 3
  • Adrian Paschke
    • 5
  • Ralph Schäfermeier
    • 6
  • Melanie Siegel
    • 1
  • Frauke Weichhardt
    • 7
  • Rigo Wenning
    • 8
  1. 1.Hochschule Darmstadt – University of Applied SciencesDarmstadtGermany
  2. GmbHDortmundGermany
  3. 3.AXA Konzern AGKölnGermany
  4. 4.Expert System Deutschland GmbHHeidelbergGermany
  5. 5.Fraunhofer FOKUSBerlinGermany
  6. 6.Freie Universität BerlinBerlinGermany
  7. 7.Semtation GmbHPotsdamGermany
  8. 8.World Wide Web ConsortiumSophia AntipolisFrance

Personalised recommendations