Advertisement

Informatik-Spektrum

, Volume 40, Issue 2, pp 205–209 | Cite as

Computer Vision für 3-D-Rekonstruktion

Vom Nischenthema zum Mainstream
  • Daniel CremersEmail author
AKTUELLES SCHLAGWORT COMPUTER VISION FÜR 3-D-REKONSTRUKTION
  • 126 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engel J, Koltun V, Cremers D (2017) Direct Sparse Odometry. IEEE T Pattern Anal. To appearGoogle Scholar
  2. 2.
    Engel J, Schöps T, Cremers D (2014) LSD-SLAM: Large-scale direct monocular SLAM. In: European Conference on Computer Vision (ECCV)Google Scholar
  3. 3.
    Faugeras O, Keriven R (1998) Complete dense stereovision using level set methods. In: European Conference on Computer Vision (ECCV)Google Scholar
  4. 4.
    Hartley R, Zisserman A (2003) Multiple View Geometry in Computer Vision. Cambridge University Press, CambridgezbMATHGoogle Scholar
  5. 5.
    Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203CrossRefGoogle Scholar
  6. 6.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS)Google Scholar
  7. 7.
    Kruppa E (1913) Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. HölderGoogle Scholar
  8. 8.
    Oswald MR, Stühmer J, Cremers D (2014) Generalized connectivity constraints for spatio-temporal 3D reconstruction. In: European Conference on Computer Vision (ECCV)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of InformaticsTUMMünchenDeutschland

Personalised recommendations