, Volume 39, Issue 6, pp 459–462 | Cite as

OCR für alte Drucke

  • Uwe SpringmannEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breuel TM, Ul-Hasan A, Al-Azawi MA, and Shafait F (2013) High-Performance OCR for Printed English and Fraktur Using LSTM Networks. In: 2th International Conference on Document Analysis and Recognition (ICDAR). IEEE, pp 683–687Google Scholar
  2. 2.
    Fischer A, Wuthrich M, Liwicki M, Frinken V, Bunke H, Viehhauser G, Stolz M (2009) Automatic Transcription of Handwritten Medieval Documents. In: 15th International Conference on Virtual Systems and Multimedia (VSMM’09). IEEE, pp 137–142Google Scholar
  3. 3.
    Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE T Pattern Anal 31(5):855–868CrossRefGoogle Scholar
  4. 4.
    Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRefGoogle Scholar
  5. 5.
    Kirchner F, Dittrich M, Beckenbauer P, Nöth M (2016) OCR bei Inkunabeln – Offizinspezifischer Ansatz der UB Würzburg. ABI Tech 36(3):178–188Google Scholar
  6. 6.
    Springmann U, Fink F, Schulz KU (2016) Automatic quality evaluation and (semi-)automatic improvement of mixed models for OCR on historical documents. Letzter Zugriff: 26.10.2016Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centrum für Informations- und Sprachverarbeitung (CIS)Ludwig-Maximilians-UniversitätMünchenDeutschland

Personalised recommendations