Informatik-Spektrum

, Volume 38, Issue 6, pp 490–499 | Cite as

Bedeutung von Zugehörigkeitsgraden in der Fuzzy-Technologie

HAUPTBEITRAG ZUGEHÖRIGKEITSGRADE IN DER FUZZY-TECHNOLOGIE

Zusammenfassung

Der Begriff der Fuzzy-Menge erweitert den klassischen Begriff der Menge, sodass man für betrachtete Objekte nicht nur (in einer Menge) ,,enthalten“ und ,,nicht enthalten“ angeben, sondern Grade der Zugehörigkeit unterscheiden kann. Während das nur zweiwertige (Nicht-)Enthaltensein unmittelbar verständlich ist, stellt sich bei dazwischenliegenden Zugehörigkeitsgraden die Frage, was sie bedeuten. Wir geben daher in diesem Aufsatz einen kurzen Überblick über die vier am weitesten verbreiteten Ansätze, Fuzzy-Zugehörigkeitsgraden eine (präzise) Bedeutung zuzuordnen: 1. als Ähnlichkeit zu Referenzwerten, 2. als Ausdruck von Präferenz, 3. als bedingte Wahrscheinlichkeit (likelihood) und 4. als Möglichkeitsgrad (degree of possibility). Wir diskutieren die Voraussetzungen und Ausdrucksmöglichkeiten dieser vier Interpretationen und untersuchen, in welchen Anwendungsbereichen sie jeweils am nützlichsten sind, wobei wir in einigen Fällen Beispielanwendungen erwähnen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin JF, Lawry J, Martin TP (1996) Mass assignment theory of the probability of fuzzy events. Fuzzy Set Syst 83:353–367CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, NY, USAMATHCrossRefGoogle Scholar
  3. 3.
    Bezdek JC, Keller J, Krishnapuram R, Pal N (1999) Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Dordrecht, NetherlandsMATHCrossRefGoogle Scholar
  4. 4.
    Bilgiç T and Türksen IB (2000) Measurement of membership functions: theoretical and empirical work. In: [15], pp 195–232Google Scholar
  5. 5.
    Borgelt C, Kruse R, Steinbrecher M (2009) Graphical Models: Representations for Learning, Reasoning and Data Mining, 2nd edition. J. Wiley & Sons, Chichester, United KingdomCrossRefGoogle Scholar
  6. 6.
    Cayrac D, Dubois D, Haziza M, Prade H (1996) Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application. IEEE T Fuzzy Syst 4:251–269CrossRefGoogle Scholar
  7. 7.
    Clarke M, Kruse R, Moral S (eds.) (1993) Symbolic and Quantitative Approaches to Reasoning and Uncertainty, LNCS vol 747. Springer, Berlin, GermanyCrossRefGoogle Scholar
  8. 8.
    Coletti G and Scozzafava R (2004) Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Set Syst 144:227–249MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38:325–339MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dempster AP (1968) Upper and lower probabilities generated by a random closed interval. Ann Math Stat 39:957–966MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dubois D and Prade H (1988) Possibility Theory. Plenum Press, New York, NY, USAMATHCrossRefGoogle Scholar
  12. 12.
    Dubois D and Prade H (1992) When upper probabilities are possibility measures. Fuzzy Set Syst 49:65–74MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dubois D, Fargier H, Prade H (1996) Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty. Appl Intell 6:287–309CrossRefGoogle Scholar
  14. 14.
    Dubois D, Moral S, Prade H (1997) A semantics for possibility theory based on likelihoods. J Math Anal Appl 205(2):359–380MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dubois D and Prade H (eds) (2000) Fundamentals of Fuzzy Sets. Kluwer, New York, NY, USAGoogle Scholar
  16. 16.
    Dubois D, Ostasiewicz W, Prade H (2000) Fuzzy sets: history and basic notions. In: [15], pp 21–106Google Scholar
  17. 17.
    Fodor JC and Roubens MR (1994) Fuzzy Preference Modelling and Multicriteria Decision Support. Springer, Heidelberg, GermanyMATHCrossRefGoogle Scholar
  18. 18.
    Frege G (1893) Grundgesetze der Arithmetik. Band I. Hermann Pohle, Jena, DeutschlandGoogle Scholar
  19. 19.
    Frege G (1903) Grundgesetze der Arithmetik. Band II. Hermann Pohle, Jena, DeutschlandGoogle Scholar
  20. 20.
    Gaines BR (1978) Fuzzy and probability uncertainty logics. Inform Control 38:154–169MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gebhardt J, Kruse R (1992) A possibilistic interpretation of fuzzy sets in the context model. In: Proc. 1st IEEE Int. Conf. on Fuzzy Systems, FUZZ-IEEE’92, San Diego, CA, USA. IEEE Press, Piscataway, NJ, USA, pp 1089–1096Google Scholar
  22. 22.
    Gebhardt J and Kruse R (1993) The context model – an integrating view of vagueness and uncertainty. Int J Approx Reason 9:283–314MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gebhardt J, Kruse R, Otte M, Schröder M (1993) A fuzzy idle speed controller. In: Proc. 26th Int. Symp. on Automotive Technology and Automation. Aachen, Germany, pp 459–463Google Scholar
  24. 24.
    Gebhardt J (1997) Learning from Data: Possibilistic Graphical Models. Habilitation Thesis. University of Braunschweig, GermanyGoogle Scholar
  25. 25.
    Hisdal E (1986) Infinite-valued logic based on two-valued logic and probability. Part 1.1: Difficulties with present-day fuzzy-set theory and their resolution in the TEE model. Part 1.2: Different sources of fuzziness. Int J Man Mach Stud 25(1):89–111, 25(2):113–138Google Scholar
  26. 26.
    Höppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy Cluster Analysis. J. Wiley & Sons, Chichester, United KingdomGoogle Scholar
  27. 27.
    Hüllermeier E (2007) Case-based Approximate Reasoning. Springer, Heidelberg/Berlin, GermanyGoogle Scholar
  28. 28.
    Jensen FV (1996) An Introduction to Bayesian Networks. UCL Press, London, United KingdomGoogle Scholar
  29. 29.
    Klement EP, Mesiar R, Pap E (2000) Triangular Norms. Kluwer, Dordrecht, NetherlandsMATHCrossRefGoogle Scholar
  30. 30.
    Klir GJ, Folger TA (1988) Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, NJ, USAMATHGoogle Scholar
  31. 31.
    Kruse R, Gebhardt J, Klawonn F (1994) Foundations of Fuzzy Systems. J. Wiley & Sons, Chichester, United Kingdom. Deutsche Ausgabe: (1993) Fuzzy Systeme, Series: Leitfäden und Monographien der Informatik. Teubner, Stuttgart, GermanyGoogle Scholar
  32. 32.
    Kruse R, Borgelt C, Klawonn F, Moewes C, Ruß G, Steinbrecher M, Held P (2011) Computational Intelligence. Springer, Heidelberg/Berlin, Germany. Deutsche Ausgabe: Kruse R, Borgelt C, Klawonn F, Moewes C, Ruß G, Steinbrecher M (2013) Computational Intelligence. Springer-Vieweg, Heidelberg/Wiesbaden, GermanyGoogle Scholar
  33. 33.
    Lawry J (2006) Modelling and Reasoning with Vague Concepts. Springer, Heidelberg/Berlin, GermanyMATHGoogle Scholar
  34. 34.
    Loginov VJ (1966) Probability treatment of Zadeh membership functions and their use in pattern recognition. Eng Cybern 68–69Google Scholar
  35. 35.
    Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7:1–13MATHCrossRefGoogle Scholar
  36. 36.
    Michels K, Klawonn F, Kruse R, Nürnberger A (2006) Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers. Springer, Heidelberg/Berlin, GermanyGoogle Scholar
  37. 37.
    Nguyen HT (1978) On random sets and belief functions. J Math Anal Appl 65:531–542MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA, USA, 2nd edition 1992Google Scholar
  39. 39.
    Rommelfanger H (1996) Fuzzy linear programming and applications. Eur J Oper Res 92:512–527MATHCrossRefGoogle Scholar
  40. 40.
    Ruspini EH (1977) A theory of fuzzy clustering. In: Proc. 16th IEEE Conf. on Decision and Control, New Orleans, LA. IEEE Press, Piscataway, NJ, USA, pp 1378–1383Google Scholar
  41. 41.
    Ruspini EH (1991) On the semantics of fuzzy logic. Int J Approx Reason 5(1):45–88MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Takagi T, Sugeno M (1985) Fuzzy identification on systems and its applications to modeling and control. IEEE T Syst Man Cyb 15:116–132MATHCrossRefGoogle Scholar
  43. 43.
    Sugeno M, Kang G (1986) Structure identification of fuzzy model. Fuzzy Set Syst 28: 329–346Google Scholar
  44. 44.
    Tanaka H, Guo PJ (1999) Possibilistic Data Analysis for Operations Research. Physica-Verlag, Heidelberg, GermanyMATHGoogle Scholar
  45. 45.
    Wolkenhauer O (1998) Possibility Theory with Applications to Data Analysis. Research Studies Press, Chichester, United KingdomMATHGoogle Scholar
  46. 46.
    Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning I–III. Inform Sciences 8:199–249, 8:301–357, 9:43–80Google Scholar
  48. 48.
    Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Set Syst 1:3–28MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Zadeh LA (1995) Discussion: probability theory and fuzzy logic are complementary rather than competitive. Technometrics 37(3):271–276CrossRefGoogle Scholar
  50. 50.
    Zimmermann H-J (1975) Optimale Entscheidungen bei unscharfen Problembeschreibungen. Z Betriebswirt Forsch 27:785–795Google Scholar
  51. 51.
    Zimmermann H-J (1976) Description and optimization of fuzzy systems. Int J Gen Syst 2:209–216MATHCrossRefGoogle Scholar
  52. 52.
    Zimmermann H-J, Zysno P (1979) Latent connectives in human decision making. Fuzzy Set Syst 3:37–51Google Scholar
  53. 53.
    Zimmermann H-J (1985) Application of fuzzy set theory to mathematical programming. Inform Sciences 36:29–58MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Intelligent Data Analysis Research UnitEuropean Centre for Soft ComputingMieres (Asturias)Spanien
  2. 2.Fakultät für InformatikOtto-von-Guericke-University MagdeburgMagdeburgDeutschland

Personalised recommendations