, Volume 38, Issue 5, pp 396–399 | Cite as

Approximate Computing

  • Christian Plessl
  • Marco Platzner
  • Peter J. Schreier


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupta V, Mohapatra D, Park SP, Raghunathan A, Roy K (2011) IMPACT: imprecise adders for low-power approximate computing. In: Proc. Int. Symp. on Low Power Electronics and Design (ISPLED) IEEE, pp 409–414Google Scholar
  2. 2.
    Esmaeilzadeh H, Sampson A, Ceze L, Burger D (2015) Neural acceleration for general-purpose approximate programs. Commun ACM 58(1)Google Scholar
  3. 3.
    Venkataramani S, Roy K, Raghunathan A (2013) Substitute-and-simplify: a unified design paradigm for approximate and quality configurable circuits. In: Proc. Design, Automation and Test in Europe Conf. (DATE), EDA Consortium, pp 1367–1372Google Scholar
  4. 4.
    Klavik P, Malossi ACI, Bekas C, Curioni A (2014) Changing computing paradigms towards power efficiency. Philos T Roy Soc, 372Google Scholar
  5. 5.
    Esmaeilzadeh H, Sampson A, Ceze L, Burger D (2012) Architecture support for disciplined approximate programming. In: Proc. Int. Conf. on Architectural Support for Programming Languages and Operating System (ASPLOS), pp 301–312Google Scholar
  6. 6.
    Nikolopoulos DS, Vandierendonck H, Bellas N, Antonopoulos CD, Lalis S, Karakonstantis G, Burg A, Naumann U (2014) Energy efficiency through significance-based computing. IEEE Comput 47(7):82–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Plessl
    • 1
  • Marco Platzner
    • 1
  • Peter J. Schreier
    • 2
  1. 1.Institut für InformatikUniversität PaderbornPaderbornDeutschland
  2. 2.Institut für Elektrotechnik und InformationstechnikUniversität PaderbornPaderbornDeutschland

Personalised recommendations