Advertisement

Informatik-Spektrum

, Volume 35, Issue 2, pp 75–86 | Cite as

Organic Design of Massively Distributed Systems: A Complex Networks Perspective

  • Ingo Scholtes
  • Claudio Juan Tessone
HAUPTBEITRAG MASSIVELY DISTRIBUTED SYSTEMS

Abstract

The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components. The notion organic highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying these characteristics are increasingly being investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic overlay networks with predictable macroscopic properties.

Keywords

Random Walk Random Graph Degree Distribution Overlay Network Statistical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamic LA, Lukose RM, Puniyani AR (2001) Search in power-law networks. Phys Rev E 64(4):046135CrossRefGoogle Scholar
  2. 2.
    Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97zbMATHCrossRefGoogle Scholar
  3. 3.
    Barabási A-L, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Physica A 272(1–2):173–187CrossRefGoogle Scholar
  4. 4.
    Almendral JA, Díaz-Guilera A (2007) Dynamical and spectral properties of complex networks. New J Phys 9(6):187–187CrossRefGoogle Scholar
  5. 5.
    Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153MathSciNetCrossRefGoogle Scholar
  6. 6.
    Babaoglu Ö, Binci T, Jelasity M, Montresor A (2007) Firefly-inspired heartbeat synchronization in overlay networks. In: First International Conference on Self-Adaptive and Self-Organizing Systems, SASO’07, Boston, Mass., USA, July 9-11, pp 77–86, IEEE, 2007Google Scholar
  7. 7.
    Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I (2003) Looking up data in P2P systems. Commun ACM 46(2):43–48CrossRefGoogle Scholar
  8. 8.
    Baldoni R, Corsaro A, Querzoni L, Scipioni S, Piergiovanni ST (2009) Coupling-Based Internal Clock Synchronization for Large-Scale Dynamic Distributed Systems. IEEE T Parall Distrib 99(RapidPosts):607–619Google Scholar
  9. 9.
    Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89(5):54101CrossRefGoogle Scholar
  10. 10.
    Barrat A, Barthélemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, New York, NY, USAzbMATHCrossRefGoogle Scholar
  11. 11.
    Berg J, Lässig M (2002) Correlated random networks. Phys Rev Lett 89(22):228701CrossRefGoogle Scholar
  12. 12.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Rep 424(4-5):175–308MathSciNetCrossRefGoogle Scholar
  13. 13.
    Boguñá M, Krioukov D, Claffy KC (2008) Navigability of complex networks. Nat Phys 5(1):74–80CrossRefGoogle Scholar
  14. 14.
    Bollobas B (2001) Random graphs. Cambridge Univ. Press, CambridgezbMATHCrossRefGoogle Scholar
  15. 15.
    Cohen JE (1988) Threshold Phenomena in Random Structures. Discrete Appl Math 19(1–3):113–128MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cohen R, Erez K, Ben-Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85(21):4626–4628CrossRefGoogle Scholar
  17. 17.
    Cohen R, Erez K, Ben-Avraham D, Havlin S (2001) Breakdown of the Internet under intentional attack. Phys Rev Lett 86:3682CrossRefGoogle Scholar
  18. 18.
    Demers A, Greene D, Hauser C, Irish W (1987) Epidemic algorithms for replicated database maintenance. In: Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, Vancouver, BC, Canada, August 10–12, 1987, pp 1–12Google Scholar
  19. 19.
    Dorogovtsev SN, Ferreira Mendes JF, Samukhin AN (2003) Principles of statistical mechanics of random networks. Nucl Phys B 666:396zbMATHCrossRefGoogle Scholar
  20. 20.
    Erdős P, Rényi A (1959) On random graphs I. Publ Math Debrecen 6(290–297):156Google Scholar
  21. 21.
    Farkas I, Derényi I, Palla G, Vicsek T (2004) Equilibrium Statistical Mechanics of Network Structures. Lect Notes Phys 650:163–187CrossRefGoogle Scholar
  22. 22.
    Floyd S, Jacobson V (1994) The Synchronization of Periodic Routing Messages. IEEE/ACM T Netw 2:122–136CrossRefGoogle Scholar
  23. 23.
    Park J, Newman MEJ (2004) Statistical mechanics of networks. Phys Rev E 70(6): 066117, http://pre.aps.org/abstract/PRE/v70/i6/e066117MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gupta I, Kermarrec AM, Ganesh AJ (2006) Efficient and adaptive epidemic-style protocols for reliable and scalable multicast. IEEE T Parall Distrib 17(7):593–605CrossRefGoogle Scholar
  25. 25.
    Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97zbMATHCrossRefGoogle Scholar
  26. 26.
    Jelasity M, Montresor A, Babaoglu Ö (2005) Gossip-based aggregation in large dynamic networks. ACM T Comput Syst 23(3):219–252CrossRefGoogle Scholar
  27. 27.
    Kleinberg JM (2006) Complex Networks and Decentralized Search Algorithms. In: International Congress of Mathematicians (ICM), 22–28 August 2006, Madrid, SpainGoogle Scholar
  28. 28.
    Lee D-S, Goh K-I, Kahng B, Kim D-H (2004) Evolution of scale-free random graphs: Potts model formulation. Nucl Phys B 696:351–380MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lucarelli D, Wang I-J (2004) Decentralized synchronization protocols with nearest neighbor communication. In: SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, New York, NY, USA, ACM, pp 62–68Google Scholar
  30. 30.
    Mattern F, Flörkemeier C (2010) Vom Internet der Computer zum Internet der Dinge. Informatik-Spektrum 33(2):107–121CrossRefGoogle Scholar
  31. 31.
    Mehta ML (1991) Random Matrices, 2 edn. Academic Press, New YorkGoogle Scholar
  32. 32.
    Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algor 6(2–3):161–180MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Moreno Y, Nekovee M, Vespignani A (2004) Efficiency and reliability of epidemic data dissemination in complex networks. Phys Rev E 69(5):055101CrossRefGoogle Scholar
  34. 34.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Noh JD (2004) Random Walks on Complex Networks. Phys Rev Lett 92(11):4MathSciNetCrossRefGoogle Scholar
  36. 36.
    Papadopoulos F, Krioukov D, Boguna M, Vahdat A (2010) Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces. In: Proceedings of the IEEE Infocom Conference, March 19, 2010, San Diego, CA, USAGoogle Scholar
  37. 37.
    Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74(1):1–14MathSciNetGoogle Scholar
  38. 38.
    Sandberg O (2006) Distributed routing in small-world networks. In: Proceedings of the eighth Workshop on Algorithm Engineering and Experiments and the third Workshop on Analytic Algorithmics and Combinatorics, Society for Industrial Mathematics, January 21, 2006, Miami, Florida, p 144Google Scholar
  39. 39.
    Sarshar N, Boykin PO, Roychowdhury VP (2004) Percolation search in power law networks: Making unstructured peer-to-peer networks scalable. In: Proceedings of the Fourth International Conference on Peer-to-Peer Computing, IEEE Computer Society, 25–27th August 2004, ZurichGoogle Scholar
  40. 40.
    Scholtes I (2010) Distributed Creation and Adaptation of Random Scale-Free Overlay Networks. In: Proceedings of the Fourth IEEE Conference on Self-Organizing and Self-Adaptive Systems (SASO), September 27–October 1, 2010, Budapest, Hungary, IEEE, pp 51–63Google Scholar
  41. 41.
    Scholtes I (2011) Harnessing Complex Structures and Collective Dynamics in Large Networked Computing Systems. Dissertation, University of TrierGoogle Scholar
  42. 42.
    Scholtes I, Botev J, Esch M, Sturm P (2010) Epidemic Self-Synchronization in Complex Networks of Kuramoto Oscillators. Adv Complex Syst 13(1):33–58MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Scholtes I, Kolos S, Zema PF (2008) The ATLAS Event Monitoring Service – Peer-to-Peer Data Distribution in High-Energy Physics. IEEE T Nucl Sci 55(3):1610–1620CrossRefGoogle Scholar
  44. 44.
    Thadakamalla HP, Albert R, Kumara SRT (2007) Search in spatial scale-free networks. New J Phys 9(6):190–190CrossRefGoogle Scholar
  45. 45.
    Waldhorst OP, Bless R, Zitterbart M (2010) Overlay-Netze als Innovationsmotor im Internet. Informatik-Spektrum 33(2):171–185CrossRefGoogle Scholar
  46. 46.
    Weiser M (1991) The computer for the 21st century. Scientific AmericanGoogle Scholar
  47. 47.
    Willinger W, Alderson DL, Doyle JC (2009) Mathematics and the Internet: A Source of Enormous Confusion and Great Potential. Internet Res 56(5):586–599MathSciNetzbMATHGoogle Scholar
  48. 48.
    Zhong M, Shen K, Seiferas J (2008) The Convergence-Guaranteed Random Walk and Its Applications in Peer-to-Peer Networks. IEEE T Comput 57(5):619–633MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Chair of Systems DesignETH ZürichZürichSwitzerland

Personalised recommendations