Informatik-Spektrum

, 34:443 | Cite as

Planning in the Real World

HAUPTBEITRAG PLANNING IN THE REAL WORLD

Abstract

In this article, we describe how real world planning problems can be solved by employing Artificial Intelligence planning techniques. We introduce the paradigm of hybrid planning, which is particularly suited for applications where plans are not intended to be automatically executed by systems, but are made for humans. Hybrid planning combines hierarchical planning – the stepwise refinement of complex tasks – with explicit reasoning about causal dependencies between actions, thereby reflecting exactly the kinds of reasoning humans perform when developing plans. We show how plans are generated and how failed plans are repaired in a way that guarantees stability. Our illustrating examples are taken from a domain model for disaster relief missions enforced upon extensive floods. Finally, we present a tool to support the challenging task of constructing planning domain models.

The article ends with an overview of a wide varity of actual planning applications and outlines further such in the area of cognitive technical systems.

References

  1. 1.
    Agosta JM, Wilkins DE (1996) Using SIPE-2 to plan emergency response to marine oil spills. IEEE Expert 11(6):6–8Google Scholar
  2. 2.
    Alami R, Fleury S, Herrb M, Ingrand FF, Robert F (1998) Multi-robot cooperation in the MARTHA project. IEEE Robot Autom Mag 5(1):36–47CrossRefGoogle Scholar
  3. 3.
    Ambite JL, Knoblock CA, Muslea M, Minton S (2005) Heracles II: Conditional constraint networks for interleaved planning and information gathering. IEEE Intell Syst 20:25–33CrossRefGoogle Scholar
  4. 4.
    Amigoni F, Gatti N, Pinciroli C, Roveri M (2005) What planner for ambient intelligence applications. IEEE T Syst Man Cy A 35:7–21CrossRefGoogle Scholar
  5. 5.
    de la Asunción M, Castillo L, Fdez-Olivares J, García-Pérez O, González A, Palao F (2005) SIADEX: an interactive knowledge-based planner for decision support in forest fire fighting. AI Commun 18:257–268MathSciNetGoogle Scholar
  6. 6.
    Avesani P, Perini A, Ricci F (2000) Interactive case-based planning for forest fire management. Appl Intell 13(1):41–57CrossRefGoogle Scholar
  7. 7.
    Bidot J, Biundo S, Heinroth T, Minker W, Nothdurft F, Schattenberg B (2010) Verbal explanations for hybrid planning. In: Proceedings of the Multiconference “Wirtschaftsinformatik” (MKWI) 2010, Göttingen, Germany, 23.–25.02.2010, Universitätsverlag Göttingen, pp 2309–2320Google Scholar
  8. 8.
    Bidot J, Biundo S, Schattenberg B (2008) Plan repair in hybrid planning. In: KI 2008: Advances in Artificial Intelligence, Proceedings of the 31st German Conference on Artificial Intelligence, Springer, pp 169–176Google Scholar
  9. 9.
    Bidot J, Goumopoulos C, Calemis I (2011) Using AI planning and late binding for managing service workflows in intelligence environments. In: Ninth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2011), IEEE Computer Society, pp 156–163Google Scholar
  10. 10.
    Biundo S, Bercher P, Geier T, Müller F, Schattenberg B (2011) Advanced user assistance based on AI planning. Cogn Syst Res 12(3-4):219–236CrossRefGoogle Scholar
  11. 11.
    Biundo S, Schattenberg B (2001) From abstract crisis to concrete relief – a preliminary report on combining state abstraction and HTN planning. In: Proceedings of the 6th European Conference on Planning, pp 157–168Google Scholar
  12. 12.
    Biundo S, Wendemuth A (2010) Von kognitiven technischen Systemen zu Companion-Systemen. Künstl Intell 24(4):335–339CrossRefGoogle Scholar
  13. 13.
    Blum AL, Furst ML (1997) Fast planning through planning graph analysis. Artif Intell 90(1–2):281–300MATHCrossRefGoogle Scholar
  14. 14.
    Bonet B, Geffner H (2001) Planning as heuristic search. Artif Intell 129:5–33MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bonet B, Thiébaux S (2003) GPT meets PSR. In: Giunchiglia E, Muscettola N, Nau DS (eds) Proceedings of the 13th International Conference on Automated Planning and Scheduling, AAAI Press, pp 102–112Google Scholar
  16. 16.
    Bradbrook K, Winstanley G, Glasspool D, Fox J, Griffiths RN (2005) AI planning technology as a component of computerised clinical practice guidelines. In: Proceedings of the 10th Conference on Artificial Intelligence in Medicine, AIME 2005, Springer, pp 171–180Google Scholar
  17. 17.
    Bresina JL, Morris PH (2007) Mixed-initiative planning in space mission operations. AI Mag 28(2):75–88Google Scholar
  18. 18.
    Castillo LA, Armengol E, Onaindia E, Sebastia L, González-Boticario J, Rodríguez A, Fernández S, Arias JD, Borrajo D (2008) samap: A user-oriented adaptive system for planning tourist visits. Expert Syst Appl 34(2):1318–1332CrossRefGoogle Scholar
  19. 19.
    Castillo LA, Fernández-Olivares J, González A (2000) A hybrid hierarchical/operator-based planning approach for the design of control programs. In: ECAI Workshop on Planning and Configuration: New results in planning, scheduling and design, pp 1–10Google Scholar
  20. 20.
    Cesta A, Cortellessa G, Benedictis RD, Strickland K (2011) Opening the PANDORA-BOX: Planning and executing timelines in a training environment. In: SPARK-11. Proceedings of the Scheduling and Planning Application Workshop at ICAPS-11Google Scholar
  21. 21.
    Cesta A, Cortellessa G, Denis M, Donati A, Fratini S, Oddi A, Policella N, Rabenau E, Schulster J (2007) Mexar2: Ai solves mission planner problems. IEEE Intell Syst 22:12–19CrossRefGoogle Scholar
  22. 22.
    CITEC: Cognitive interaction technology – center of excellence. http://www.cit-ec.de, last access July 2011Google Scholar
  23. 23.
    CoTeSys: Cognition for technical systems – cluster of excellence. http://www.cotesys.de, last access July 2011Google Scholar
  24. 24.
    Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49:61–91MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Erol K, Hendler J, Nau DS (1994) UMCP: a sound and complete procedure for hierarchical task-network planning. In: Proceedings of the 2nd International Conference on Artificial Intelligence Planning Systems, AAAI Press, pp 249–254Google Scholar
  26. 26.
    Fdez-Olivares J, Castillo L, Cózar JA, García Pérez O (2011) Supporting clinical processes and decisions by hierarchical planning and scheduling. Comput Intell 27(1):103–122CrossRefGoogle Scholar
  27. 27.
    Fikes RE, Nilsson NJ (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2:189–208MATHCrossRefGoogle Scholar
  28. 28.
    Hedberg SR (2002) Dart: Revolutionizing logistics in planning. IEEE Intell Syst 17(3):81–83CrossRefGoogle Scholar
  29. 29.
    Helmert M (2006) The fast downward planning system. J Artif Intell Res 26:191–246MATHCrossRefGoogle Scholar
  30. 30.
    Hoffmann J, Bertoli P, Helmert M, Pistore M (2009) Message-based web service composition, integrity constraints, and planning under uncertainty: a new connection. J Artif Intell Res 35:49–117MathSciNetMATHGoogle Scholar
  31. 31.
    Hoffmann J, Nebel B (2001) The FF planning system: fast plan generation through heuristic search. J Artif Intell Res 14:253–302MATHGoogle Scholar
  32. 32.
    Hoffmann J, Weber I, Kraft FM (2010) SAP speaks PDDL. In: Proceedings of the 24th National Conference on Artificial Intelligence, AAAI Press, pp 1096–1101Google Scholar
  33. 33.
    Kambhampati S (1997) Refinement planning as a unifying framework for plan synthesis. AI Mag 18(2):67–98Google Scholar
  34. 34.
    Kambhampati S, Mali A, Srivastava B (1998) Hybrid planning for partially hierarchical domains. In: Proceedings of the 15th National Conference on Artificial Intelligence, AAAI Press, pp 882–888Google Scholar
  35. 35.
    Keller T, Eyerich P, Nebel B (2010) Task planning for an autonomous service robot. In: KI 2010: Advances in Artificial Intelligence, Proceedings of the 33rd German Conference on Artificial Intelligence, Springer, pp 358–365Google Scholar
  36. 36.
    Koehler J, Schuster K (2000) Elevator control as a planning problem. In: Proceedings of the 5th International Conference on Artificial Intelligence Planning Systems, AAAI Press, pp 331–338Google Scholar
  37. 37.
    Lundh R, Karlsson L, Saffiotti A (2008) Autonomous functional configuration of a network robot system. Robot Autonom Syst 56(10):819–830CrossRefGoogle Scholar
  38. 38.
    Marinagi CC, Spyropoulos CD, Papatheodorou C, Kokkotos S (2000) Continual planning and scheduling for managing patient tests in hospital laboratories. Artif Intell Med 20(2):139–154CrossRefGoogle Scholar
  39. 39.
    McAllester D, Rosenblitt D (1991) Systematic nonlinear planning. In: Proceedings of the 9th National Conference on Artificial Intelligence, AAAI Press, pp 634–639Google Scholar
  40. 40.
    McDermott D (2000) The 1998 AI planning systems competition. AI Mag 21(2):35–55Google Scholar
  41. 41.
    Muñoz Avila H, Aha DW, Breslow L, Nau D (1999) Hicap: an interactive case-based planning architecture and its application to noncombatant evacuation operations. In: Proceedings of the 16th National Conference on Artificial Intelligence, AAAI Press, pp 870–875Google Scholar
  42. 42.
    Muscettola N, Nayak PP, Pell B, Williams BC (1998) Remote agent: to boldly go where no ai system has gone before. Artif Intell 103(1–2):5–47MATHCrossRefGoogle Scholar
  43. 43.
    Nau DS, Ghallab M, Traverso P (2004) Automated Planning: Theory & Practice. Morgan KaufmannGoogle Scholar
  44. 44.
    Orkin J (2006) Three states and a plan: the AI of F.E.A.R. In: Proceedings of the Game Developers ConferenceGoogle Scholar
  45. 45.
    Penberthy JS, Weld DS (1992) UCPOP: A sound, complete, partial order planner for ADL. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning, pp 103–114Google Scholar
  46. 46.
    Pistore M, Traverso P, Bertoli P (2005) Automated composition of web services by planning in asynchronous domains. In: Proceedings of the 15th International Conference on Automated Planning and Scheduling, AAAI Press, pp 2–11Google Scholar
  47. 47.
    Quintero E, García-Olaya Á, Borrajo D, Fernández F (2011) Control of autonomous mobile robots with automated planning. J Phys Agents 5(1):3–13Google Scholar
  48. 48.
    R-Moreno MD, Borrajo D, Cesta A, Oddi A (2007) Integrating planning and scheduling in workflow domains. Expert Syst Appl 33(2):389–406CrossRefGoogle Scholar
  49. 49.
    Ruehl SW, Xue Z, Kerscher T, Dillmann R (2010) Towards automatic manipulation action planning for service robots. In: KI 2010: Advances in Artificial Intelligence, Proceedings of the 33rd German Conference on Artificial Intelligence, Springer, pp 366–373Google Scholar
  50. 50.
    Ruml W, Do MB, Zhou R, Fromherz MPJ (2011) On-line planning and scheduling: an application to controlling modular printers. J Artif Intell Res 40:415–468Google Scholar
  51. 51.
    Schattenberg B (2009) Hybrid Planning &Scheduling. PhD thesis, Ulm University, GermanyGoogle Scholar
  52. 52.
    Schattenberg B, Bidot J, Biundo S (2007) On the construction and evaluation of flexible plan-refinement strategies. In: KI 2007: Advances in Artificial Intelligence, Proceedings of the 30th German Conference on Artificial Intelligence, Springer, pp 367–381Google Scholar
  53. 53.
    Schattenberg B, Biundo S (2002) On the identification and use of hierarchical resources in planning and scheduling. In: Proceedings of the 6th International Conference on Artificial Intelligence Planning Systems, AAAI Press, pp 263–272Google Scholar
  54. 54.
    Schattenberg B, Weigl A, Biundo S (2005) Hybrid planning using flexible strategies. In: KI 2005: Advances in Artificial Intelligence, Proceedings of the 28th German Conference on Artificial Intelligence, Springer, pp 258–272Google Scholar
  55. 55.
    SFB/Transregio 62: A companion-technology for cognitive technical systems. http://www.sfb-trr-62.de, last access July 2011Google Scholar
  56. 56.
    Sirin E, Parsia B, Vu D, Hendler J, Nau D (2004) HTN planning for web service composition using SHOP2. Web Semantics: Science, Services and Agents on the World Wide Web 1(4):377–396CrossRefGoogle Scholar
  57. 57.
    Smith SJJ, Nau DS, Throop TA (1998) Computer bridge: a big win for AI planning. AI Mag 19(2):93–106Google Scholar
  58. 58.
    Sohrabi S, Baier JA, McIlraith SA (2010) Diagnosis as planning revisited. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning, AAAI PressGoogle Scholar
  59. 59.
    Tate A, Levine J, Jarvis P, Dalton J (2000) Using AI planning technology for army small unit operations. In: Proceedings of the 5th International Conference on Artificial Intelligence Planning Systems, AAAI Press, pp 379–386Google Scholar
  60. 60.
    Thakkar S, Ambite JL, Knoblock CA (2005) Composing, optimizing, and executing plans for bioinformatics web services. VLDB J 14(3):330–353CrossRefGoogle Scholar
  61. 61.
    Yang Q (1998) Intelligent Planning. A Decomposition and Abstraction Based Approach. SpringerGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Susanne Biundo
    • 1
  • Julien Bidot
    • 1
  • Bernd Schattenberg
    • 1
  1. 1.Institute of Artificial IntelligenceUlm UniversityUlmGermany

Personalised recommendations