, Volume 33, Issue 5, pp 504–508 | Cite as

,,When nobody else dreamed of these things“ – Axel Thue und die Termersetzung

  • Wolfgang Thomas


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader F, Nipkow T (1998) Term Rewriting and All That. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Biggs NL, Lloyd EK, Wilson RJ (1976) Graph Theory 1736–1936. Clarendon Press, OxfordzbMATHGoogle Scholar
  3. 3.
    Büchi JR (1989) Finite Automata, their Algebras and Grammars. Springer, New YorkGoogle Scholar
  4. 4.
    Church A (1936) An unsolvable problem of elementary number theory. Amer J Math 58:345–363CrossRefMathSciNetGoogle Scholar
  5. 5.
    Church A, Rosser JB (1936) Some properties of conversion. Trans Amer Math Soc 39:472–482zbMATHMathSciNetGoogle Scholar
  6. 6.
    Curry HB (1930) Grundzüge der kombinatorischen Logik. Amer J Math 52:509–536zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hilbert D (1901) Mathematische Probleme. Arch Math Phys 1:44–63, 213–237Google Scholar
  8. 8.
    Knuth DE, Bendix PB (1970) Simple word problems in universal algebra. In: Leech J (ed) Computational Problems in Abstract Algebra. Pergamon Press, London, pp 263–297Google Scholar
  9. 9.
    König D (1950) Theorie der endlichen und unendlichen Graphen. Chelsea Publ Comp, New YorkzbMATHGoogle Scholar
  10. 10.
    Lyndon RC, Schupp PE (1977) Combinatorial Group Theory. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  11. 11.
    Matiyasevich Y (1993) Hilbert’s Tenth Problem. MIT Press, Cambridge, MAGoogle Scholar
  12. 12.
    Nagel T, Selberg A, Selberg S, Thalberg K (eds) (1977) Selected Mathematical Papers of Axel Thue. Universitetsforlaget, OsloGoogle Scholar
  13. 13.
    Post EL (1994) Recursive unsolvability of a problem of Thue. J Symb Logic 12(1):1–11. Nachdruck in: Davis M (ed) (1994) The Collected Works of Emil L. Post. Birkhäuser, Boston, pp 503–513Google Scholar
  14. 14.
    Steinby M, Thomas W (2000) Trees and term rewriting in 1910: on a paper by Axel Thue. Bull Eur Ass Theor Comput Sci 72:256–269MathSciNetGoogle Scholar
  15. 15.
    Thue A (1910) Die Lösung eines Spezialfalles eines generellen logischen Problems. Kra. Videnskabs-Selskabets Skrifter. I. Mat. Nat. Kl. 1910, No. 8, Kristiania 1910. Nachdruck in [12], S 273–310Google Scholar
  16. 16.
    Thue A (1914) Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Kra. Videnskabs-Selskabets Skrifter. I. Mat. Nat. Kl. 1914, No. 10, Kristiania 1914. Nachdruck in [12], S 493–524Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Lehrstuhl Informatik 7RWTH AachenAachenDeutschland

Personalised recommendations