, Volume 33, Issue 5, pp 462–467 | Cite as

Berechnung von Nash-Gleichgewichten



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann H, Röglin H, Vöcking B (2008) On the impact of combinatorial structure on congestion games. J ACM 55(6)Google Scholar
  2. 2.
    Aumann R (1974) Subjectivity and correlation in randomized strategies. J Math Econ 1:67–96MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blum A, Mansour Y (2007) Learning, regret minimization, and equilibria. In: Nisan N, Tardos É, Roughgarden T, Vazirani V (eds) Algorithmic Game Theory, Chapter 4. Cambridge University PressGoogle Scholar
  4. 4.
    Chen X, Deng X, Teng S-H (2009) Settling the complexity of computing two-player Nash equilibria. J ACM 56(3)Google Scholar
  5. 5.
    Chien S, Sinclair A (2007) Convergence to approximate Nash equilibria in congestion games. In: Proc. 18th Symp. Discrete Algorithms (SODA), pp 169–178Google Scholar
  6. 6.
    Daskalakis C, Goldberg P, Papadimitriou C (2006) The complexity of computing a Nash equilibrium. In: Proc. 38th Symp. Theory of Computing (STOC), pp 71–78Google Scholar
  7. 7.
    Daskalakis C, Papadimitriou C (2009) On oblivious PTAS’s for Nash equilibrium. In: Proc. 41st Symp. Theory of Computing (STOC), pp 75–84Google Scholar
  8. 8.
    Fabrikant A, Papadimitriou C, Talwar K (2004) The complexity of pure Nash equilibria. In: Proc. 36th Symp. Theory of Computing (STOC), pp 604–612Google Scholar
  9. 9.
    Ieong S, McGrew R, Nudelman E, Shoham Y, Sun Q (2005) Fast and compact: A simple class of congestion games. In: Proc. 20th Conf. Artificial Intelligence (AAAI), pp 489–494Google Scholar
  10. 10.
    Johnson D, Papadimitriou C, Yannakakis M (1988) How easy is local search? J Comput Syst Sci 37:79–100MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Khachian L (1979) A polynomial algorithm in linear programming (in Russian). Dokl Akad Nauk SSSR 244:1093–1096MathSciNetGoogle Scholar
  12. 12.
    Lemke C, Howson J (1964) Equilibrium points of bimatrix games. SIAM J Appl Math 12:413–423MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lipton R, Markakis V, Mehta A (2003) Playing large games using simple strategies. In: Proc. 3rd Conf. Electronic Commerce (EC), pp 36–41Google Scholar
  14. 14.
    Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295CrossRefMathSciNetGoogle Scholar
  15. 15.
    von Neumann J, Morgenstern O (1944) Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJMATHGoogle Scholar
  16. 16.
    Papadimitriou C (1994) On the complexity of the parity argument and other inefficient proofs of existence. J Comput Syst Sci 48(3):498–532MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Papadimitriou C, Roughgarden T (2008) Computing correlated equilibria in multiplayer games. J ACM 55(3)Google Scholar
  18. 18.
    Rosenthal R (1973) A class of games possessing pure-strategy Nash equilibria. Int J Game Theory 2:65–67MATHCrossRefGoogle Scholar
  19. 19.
    Savani R, von Stengel B (2006) Hard-to-solve bimatrix games. Econometrica 74(2):397–429MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Skopalik A, Vöcking B (2008) Inapproximability of pure Nash equilibria. In: Proc. 40th Symp. Theory of Computing (STOC), pp 355–364Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Lehrstuhl Informatik 1RWTH AachenAachenDeutschland

Personalised recommendations