Advertisement

Informatik-Spektrum

, Volume 33, Issue 5, pp 444–451 | Cite as

Deduktion: von der Theorie zur Anwendung

  • Franz Baader
  • Bernhard Beckert
  • Tobias Nipkow
HAUPTBEITRAG DEDUKTION: VON DER THEORIE ZUR ANWENDUNG

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkassar E, Hillebrand M, Leinenbach D, Schirmer N, Starostin A (2008) The Verisoft approach to systems verification. In: Shankar N, Woodcock J (eds) Verified Software: Theories, Tools, Experiments (VSTTE 2008), vol 5295 of LNCS. Springer, pp 209–224Google Scholar
  2. 2.
    Appel K, Haken W (1976) Every planar map is four colorable. Bull AMS 82:711–712zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baader F, Nipkow T (1998) Term Rewriting and All That. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. 4.
    Baader F, Sattler U (2001) An overview of tableau algorithms for description logics. Stud Logica 69:5–40zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2003) The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge, UKGoogle Scholar
  6. 6.
    Barrett C, Tinelli C (2007) CVC3. In: Damm W, Hermanns H (eds) Proceedings, 19th International Conference on Computer Aided Verification (CAV ’07), LNCS 4590. Springer, pp 298–302Google Scholar
  7. 7.
    Bertot Y, Castéran P (2004) Interactive Theorem Proving and Program Development. Springer, Berlin, DeutschlandGoogle Scholar
  8. 8.
    Claessen K, Sörensson N (2003) New techniques that improve MACE-style finite model finding. In: Baumgartner P, Fermüller C (eds) Proceedings of the CADE-19 Workshop: Model Computation – Principles, Algorithms, Applications (Miami, USA)Google Scholar
  9. 9.
    Dahn BI (1998) Robbins algebras are boolean: A revision of mccune’s computer-generated solution of Robbins’s problem. J Algebra 208(2):526–532zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dutertre B (2007) System description: Yices 1.0.10. In: SMT-COMP’07Google Scholar
  11. 11.
    Gonthier G (2008) Formal proof – the four-color theorem. Not AMS 55:1382–1393zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hales TC (2000) Cannonballs and honeycombs. Not AMS 47:440–449zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hales TC, Harrison J, McLaughlin S, Nipkow T, Obua S, Zumkeller R (2009) A revision of the proof of the Kepler conjecture. Discr Comput Geom, Published onlineGoogle Scholar
  14. 14.
    van Harmelen F, Lifschitz V, Porter B (eds) (2007) Handbook of Knowledge Representation (Foundations of Artificial Intelligence). Elsevier Science, San Diego, USAGoogle Scholar
  15. 15.
    Harrison J (2009) HOL Light: An overview. In: Berghofer S, Nipkow T, Urban C, Wenzel M (eds) Theorem Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of LNCS. Springer, pp 60–66Google Scholar
  16. 16.
    Hillenbrand T (2003) Citius altius fortius: Lessons learned from the theorem prover WALDMEISTER. Electr Notes Theor Comput Sci 86(1):13Google Scholar
  17. 17.
    Horrocks I (2003) Implementation and optimization techniques. In: Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, pp 306–346Google Scholar
  18. 18.
    Horrocks I, Sattler U (2005) A tableaux decision procedure for SHOIQ. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Edinburgh (UK). Morgan KaufmannGoogle Scholar
  19. 19.
    Horrocks I, Kutz O, Sattler U (2006) The even more irresistible SROIQ. In: Doherty P, Mylopoulos J, Welty CA (eds) Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), Lake District, UK, 2006. AAAI Press/The MIT Press, pp 57–67Google Scholar
  20. 20.
    Hustadt U, Schmidt R (2000) MSPASS: Modal reasoning by translation and first-order resolution. In: Dyckhoff R (ed) Automated Reasoning with Analytic Tableaux and Related Methods, International Conference (TABLEAUX 2000), vol 1847 of Lecture Notes in Artificial Intelligence, Springer, pp 67–71Google Scholar
  21. 21.
    Hustadt U, Motik B, Sattler U (2004) Reducing SHIQ-description logic to disjunctive datalog programs. In: Dubois D, Welty CA, Williams M-A (eds) Proc. of the 9th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2004). Morgan Kaufmann, pp 152–162Google Scholar
  22. 22.
    Kaufmann M, Manolios P, Moore JS (2000) Computer-Aided Reasoning: An Approach. Kluwer Academic PublishersGoogle Scholar
  23. 23.
    Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish M, Sewell T, Tuch H, Winwood S (2009) seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Symposium on Operating Systems Principles (SOSP). ACM, pp 207–220Google Scholar
  24. 24.
    Loveland DE (2000) Automated deduction: Achievements and future directions. Commun ACM 43(11)Google Scholar
  25. 25.
    McLaughlin S, Harrison J (2005) A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis R (ed) Automated Deduction (CADE-20), volume 3632 of LNCS. Springer, pp 295–314Google Scholar
  26. 26.
    Minker J (ed) (2000) Logic-Based Artificial Intelligence. Kluwer Academic PublisherGoogle Scholar
  27. 27.
    Minsky M (1981) A framework for representing knowledge. In: Haugeland J (ed) Mind Design. The MIT Press, Cambridge, USA. A longer version appeared in The Psychology of Computer Vision (1975)Google Scholar
  28. 28.
    de Moura L, Bjørner N (2008) Z3: An efficient SMT solver. In: Tools and Algorithms for the Construction and Analysis of Systems, Proceedings of the 14th International Conference, Budapest, Hungary, LNCS 4963. Springer, pp 337–340Google Scholar
  29. 29.
    Nebel B (1990) Terminological reasoning is inherently intractable. Artif Intel 43:235–249zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Nipkow T, Paulson L, Wenzel M (2002) Isabelle/HOL – A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. SpringerGoogle Scholar
  31. 31.
    Nipkow T, Bauer G, Schultz P (2006) Flyspeck I: Tame graphs. In: Furbach U, Shankar N (eds) Automated Reasoning (IJCAR 2006), volume 4130 of LNCS. Springer, pp 21–35Google Scholar
  32. 32.
    Owre S, Shankar N (2008) A brief overview of PVS. In: Mohamed OA, Muñoz C, Tahar S (eds) Theorem Proving in Higher Order Logics (TPHOLs 2008), volume 5170 of LNCS. Springer, pp 22–27Google Scholar
  33. 33.
    Quillian MR (1968) Semantic memory. In: Minsky M (ed) Semantic Information Processing. The MIT Press, pp 216–270Google Scholar
  34. 34.
    Ranise S, Tinelli C (2006) The SMT-LIB standard: Version 1.2. Technical report. Department of Computer Science, The University of IowaGoogle Scholar
  35. 35.
    Riazanov A, Voronkov A (2002) The design and implementation of VAMPIRE. AI Commun 15(2–3):91–110zbMATHGoogle Scholar
  36. 36.
    Schmidt-Schauß M, Smolka G (1991) Attributive concept descriptions with complements. Artif Intel 48(1):1–26zbMATHCrossRefGoogle Scholar
  37. 37.
    Schulz S (2004) System description: E 0.81. In: Basin DA, Rusinowitch M (eds) Automated Reasoning – Second International Joint Conference, IJCAR 2004, Cork, Ireland, July 4–8, 2004, Proceedings, LNCS 3097. Springer, pp 223–228Google Scholar
  38. 38.
    Slind K, Norrish M (2008) A brief overview of HOL4. In: Mohamed OA, Muñoz C, Tahar S (eds) Theorem Proving in Higher Order Logics (TPHOLs 2008), volume 5170 of LNCS. Springer, pp 28–32Google Scholar
  39. 39.
    Sutcliffe G (2009) The 4th IJCAR automated theorem proving system competition – CASC-J4. AI Commun 22(1):59–72Google Scholar
  40. 40.
    Sutcliffe G, Suttner C, The TPTP problem library for automated theorem proving. At http://www.cs.miami.edu/∼tptp/, letzter Zugriff 3.8.2010Google Scholar
  41. 41.
    Winwood S, Klein G, Sewell T, Andronick J, Cock D, Norrish M (2009) Mind the gap: A verification framework for low-level C. In: Berghofer S, Nipkow T, Urban C, Wenzel M (eds) Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of LNCS. Springer, pp 500–515Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für Theoretische InformatikTU DresdenDresdenDeutschland
  2. 2.Institut für Theoretische InformatikKarlsruher Institut für TechnologieKarlsruheDeutschland
  3. 3.Institut für InformatikTU MünchenGarching b. MünchenDeutschland

Personalised recommendations