Advertisement

Informatik-Spektrum

, Volume 33, Issue 5, pp 484–488 | Cite as

Praktische Programmverifikation durch statische Analyse

  • Helmut Seidl
HAUPTBEITRAG PRAKTISCHE PROGRAMMVERIFIKATION

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi M, Leino KRM (2003) A Logic of Object-Oriented Programs. In: Verification: Theory and Practice. Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday, LNCS 2772, Springer, pp 11–41Google Scholar
  2. 2.
    Apt KR (1981) Ten Years of Hoare’s Logic: A Survey – Part I. ACM Trans Program Lang Syst 3(4):431–483zbMATHCrossRefGoogle Scholar
  3. 3.
    Apt KR (1984) Ten Years of Hoare’s Logic: A Survey – Part II: Nondeterminism. Theor Comput Sci 28:83–109zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Apt KR, Olderog E-R (1981) The Science of Programming. Springer, New YorkGoogle Scholar
  5. 5.
    Barnett M, DeLine R, Fähndrich M, Jacobs B, Leino KRM, Schulte W (2004) Verification of Object-Oriented Programs with Invariants. J Object Technol 3(6):27–56Google Scholar
  6. 6.
    Barnett M, DeLine R, Fähndrich M, Jacobs B, Leino KRM, Schulte W, Venter H (2005) The Spec# Programming System: Challenges and Directions. In: Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conf. (VSTTE). Revised Selected Papers and Discussions, pp 144–152Google Scholar
  7. 7.
    Bessey A, Block K, Chelf B, Chou A, Fulton B, Hallem S, Henri-Gros C, Kamsky A, McPeak S, Engler DR (2010) A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World. Commun ACM 53(2):66–75CrossRefGoogle Scholar
  8. 8.
    Cousot P (1990) Methods and Logics for Proving Programs. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B). Elsevier and MIT Press, pp 841–994Google Scholar
  9. 9.
    Cousot P, Cousot R (1977) Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: 4th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL), pp 238–252Google Scholar
  10. 10.
    Cousot P, Cousot R, Feret J, Miné A, Mauborgne L, Monniaux D, Rival X (2007) Varieties of Static Analyzers: A Comparison with ASTREE. In: First Joint IEEE/IFIP Symp. on Theoretical Aspects of Software Engineering (TASE), pp 3–20Google Scholar
  11. 11.
    Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Rival X (2009) Why does Astrée scale up? Form Method Syst Des 35(3):229–264zbMATHCrossRefGoogle Scholar
  12. 12.
    de Moura LM, Bjørner N (2008) Z3: An Efficient SMT Solver. In: Tools and Algorithms for the Construction and Analysis of Systems, 14th Int. Conf. (TACAS). LNCS 4963, Springer, pp 337–340Google Scholar
  13. 13.
    Dijkstra EW (1975) Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun ACM 18(8):453–457zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dijkstra EW (1976) A Discipline of Programming. Prentice-HallGoogle Scholar
  15. 15.
    Lakhnech Y, Zwiers J, De Boer F, Hannemann U, Hooman J, Poel M (2001) In: De Roever W-P (ed) Concurrency Verification: Introduction to Compositional and Noncompositional Methods. Cambridge University PressGoogle Scholar
  16. 16.
    Ferdinand C, Heckmann R (2008) Worst-Case Execution Time – A Tool Provider’s Perspective. In: 11th IEEE Int. Symp. on Object-Oriented Real-Time Distributed Computing (ISORC), pp 340–345Google Scholar
  17. 17.
    Ferdinand C, Heckmann R, Wilhelm R (2004) Analyzing the Worst-Case Execution Time by Abstract Interpretation of Executable Code. In: Automotive Software – Connected Services in Mobile Networks, First Automotive Software Workshop (ASWSD). Revised Selected Papers. LNCS 4147, Springer, pp 1–14Google Scholar
  18. 18.
    Ferrara P, Logozzo F, Fähndrich M (2008) Safer Unsafe Code for .NET. In: 23rd Ann. ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM, pp 329–346Google Scholar
  19. 19.
    Floyd RW (1967) Assigning Meaning to Programs. In: Schwartz JT (ed) Symp. on Applied Mathematics 19, Mathematical Aspects of Computer Science. American Mathematical Society, New York, pp 19–32Google Scholar
  20. 20.
    Gawlitza T, Seidl H (2007) Precise Fixpoint Computation Through Strategy Iteration. In: Programming Languages and Systems, 16th European Symp. on Programming (ESOP). LNCS 4421, Springer, pp 300–315Google Scholar
  21. 21.
    Gawlitza T, Seidl H (2007) Precise Relational Invariants Through Strategy Iteration. In: Computer Science Logic, 21st International Workshop (CSL). LNCS 4646, Springer, pp 23–40Google Scholar
  22. 22.
    Gries D (1981) The Science of Programming. Springer, New YorkzbMATHGoogle Scholar
  23. 23.
    Gupta A, Majumdar R, Rybalchenko A (2009) From Tests to Proofs. In: Tools and Algorithms for the Construction and Analysis of Systems, 15th Int. Conf. (TACAS). LNCS 5505, Springer, pp 262–276Google Scholar
  24. 24.
    Hoare CAR (1969) An Axiomatic Basis for Computer Programming. Commun ACM 12(10):576–580zbMATHCrossRefGoogle Scholar
  25. 25.
    Hoare CAR (1971) Procedures and Parameters: An Axiomatic Approach. In: Engeler E (ed), Symp. on the Semantics of Algorithmic Languages. Lecture Notes in Mathematics 188, Springer, pp 102–116Google Scholar
  26. 26.
    Meyer B (1998) Object-Oriented Software Construction, 2nd edn. Prentice Hall Professional Technical ReferenceGoogle Scholar
  27. 27.
    Mitchel R, McKim J, Meyer B (2001) Design by Contract, by Example. Addison Wesley Longman, RedwoodGoogle Scholar
  28. 28.
    Monniaux D (2009) Automatic Modular Abstractions for Linear Constraints. In: 36th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL), pp 140–151Google Scholar
  29. 29.
    Owicki SS, Gries D (1976) Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun ACM 19(5):279–285zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Pierik C, de Boer FS (2003) A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts. In: Formal Methods for Open Object-Based Distributed Systems, 6th IFIP WG 6.1 Int. Conf. (FMOODS). LNCS 2884, Springer, pp 64–78Google Scholar
  31. 31.
    Presburger M (1929) Über die Vollständigkeit eines gewissen Systems der Arithmetic ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes-reduns du primier Concrès des Mathematicien des Pays Slaves. 395, Warschau, pp 192–201Google Scholar
  32. 32.
    Tarski A (1951) A Decision Procedure for Elementary Algebra and Geometry. University of California Press, BerkeleyGoogle Scholar
  33. 33.
    Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley DB, Bernat G, Ferdinand C, Heckmann R, Mitra T, Mueller F, Puaut I, Puschner PP, Staschulat J, Stenström P (2008) The Worst-case Execution-time Problem – Overview of Methods and Survey of Tools. ACM Trans Embedded Comput Syst 7(3)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für InformatikTechnische Universität MünchenGarching b. MünchenDeutschland

Personalised recommendations