Advertisement

Informatik-Spektrum

, Volume 33, Issue 2, pp 143–159 | Cite as

Mobilität im ,,Future Internet“

Geräte- und Ressourcenmobilität: Herausforderungen und Techniken im Überblick
  • Karin Anna Hummel
  • Andrea Hess
  • Harald Meyer
HAUPTBEITRAG MOBILITÄT IM ,,FUTURE INTERNET“

Zusammenfassung

Eine der Herausforderungen im ,,Future Internet“ ist durch die Mobilität der Benutzer aber auch durch die der Ressourcen gegeben. Während Benutzer zunehmend mit tragbaren Geräten auf Internetdienste zugreifen, wurden Internetprotokolle unter der Annahme stationärer Knoten entworfen. Im Artikel wird ein Überblick über Mechanismen zur Unterstützung von Gerätemobilität gegeben, die für eine mobilitätsfreundliche Architektur des Future Internet von Relevanz sind. Darunter fallen Mechanismen zur Verbesserung der Konnektivität und Tolerierung von Verbindungsunterbrechungen sowie Mechanismen zur effizienten Adressierung und für übergangsloses Handoff-Management. Zusätzlich wird das Konzept der Mobility-Awareness vorgestellt, das auf Basis aktueller Bewegung reaktive und proaktive Adaptierungen von Netzwerkprotokollen ermöglicht.

Die Mobilität von Netzwerkressourcen wird als zweite Form der Mobilität im Überblick diskutiert. Zusammen mit der Netzwerkvirtualisierung kann die Ressourcenmigration zur Flexibilisierung des Future Internet beitragen. Ressourcen wie virtuelle Links und virtuelle Router können zur Erreichung unterschiedlicher Ziele, wie zum Beispiel zur Verbesserung der Netzwerkqualität, Robustheit oder Energieeffizienz, migriert werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir Y, Danilov C, Hilsdale M, Musaloiu-Elefteri R, Rivera N (2006) Fast Handoff for Seamless Wireless Mesh Networks. MOBISYS 2006: 4th Int Conference on Mobile Systems, Applications and Services. ACM, New York, pp 83–95CrossRefGoogle Scholar
  2. 2.
    Ashbrook D, Starner T (2003) Using GPS to Learn Significant Locations and Predict Movement Across Multiple Users. Pers Ubiquitous Comput 7(5):275–286CrossRefGoogle Scholar
  3. 3.
    Baun C, Kunze M, Ludwig T (2009) Servervirtualisierung. Informatik-Spektrum 32(3):197–205CrossRefGoogle Scholar
  4. 4.
    Bellavista P, Corradi A, Stefanelli C (2000) A Mobile Agent Infrastructure for Terminal, User, and Resource Mobility. NOMS 2000: Network Operations and Management Symposium. IEEE, pp 877–890Google Scholar
  5. 5.
    Bettstetter C (2001) Mobility Modeling in Wireless Networks: Categorization, Smooth Movement, and Border Effects. ACM SIGMOBILE Mob Comput Commun Rev 5(3):55–66CrossRefGoogle Scholar
  6. 6.
    Bettstetter C, Resta G, Santi P (2003) The Node Distribution of the Random Waypoint Mobility Model for Wireless Ad Hoc Networks. IEEE Trans Mob Comput 2(3):257–269CrossRefGoogle Scholar
  7. 7.
    Bless R, Hübsch C, Mies S, Waldhorst OP (2008) The Underlay Abstraction in the Spontaneous Virtual Networks (SpoVNet) Architecture. NGI 2008: Next Generation Internet Networks. IEEE, pp 115-122Google Scholar
  8. 8.
    Le Boudec J, Vojnovic M (2006) The Random Trip Model: Stability, Stationary Regime, and Perfect Simulation. IEEE/ACM Trans Netw 14(6):1153–1166CrossRefGoogle Scholar
  9. 9.
    Camp T, Boleng J, Davies V (2002) A Survey of Mobility Models for Ad Hoc Network Research. Wirel Commun Mob Comput 2(5):483–502CrossRefGoogle Scholar
  10. 10.
    Cayirci E, Akademileri H, Levent Y, Akyildiz IF (2002) User Mobility Pattern Scheme for Location Update and Paging in Wireless Systems. IEEE Trans Mob Comput 1(3):236–247CrossRefGoogle Scholar
  11. 11.
    Chowdhury NMMK, Boutaba R (2008) A Survey of Network Virtualization. Technical Report CS-2008-25, University of WaterlooGoogle Scholar
  12. 12.
    Clausen T, Jacquet P (eds) (2003) Optimized Link State Routing Protocol (OLSR). RFC 3626Google Scholar
  13. 13.
    CRAWDAD (2009) A Community Resource for Archiving Wireless Data at Dartmouth. http://crawdad.cs.dartmouth.edu/ (abgerufen am 30 Okt 2009)Google Scholar
  14. 14.
    Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker S, Sturgis H, Swinehart D, Terry D (1987) Epidemic Algorithms for Replicated Database Maintenance. PODC 1987: 6th Annual Symposium on Principles of Distributed Computing. ACM, New York, pp 1–12Google Scholar
  15. 15.
    Droms R (1997) Dynamic Host Configuration Protocol, RFC 2131Google Scholar
  16. 16.
    Ekman F, Keränen A, Karvo J, Ott J (2008) Working Day Movement Model. MOBILITYMODELS 2008: 1st ACM SIGMOBILE Workshop on Mobility Models. ACM, New York, pp 33–40CrossRefGoogle Scholar
  17. 17.
    Farrell S, Cahill V, Geraghty D, Humphreys I, McDonald P (2006) When TCP Breaks: Delay- and Disruption-Tolerant Networking. IEEE Internet Comput 10(4):72–78CrossRefGoogle Scholar
  18. 18.
    Feng K-T, Hsu C-H, Lu T-E (2008) Velocity-assisted Predictive Mobility and Location-aware Routing Protocols for Mobile Ad Hoc Networks. IEEE Trans Veh Technol 57(1):448–464CrossRefGoogle Scholar
  19. 19.
    Gossa J, Janecek AG, Hummel KA, Gansterer WN, Pierson J-M (2008) Proactive Replica Placement Using Mobility Prediction. MDMW 2008: 9th International Conference on Mobile Data Management Workshops. IEEE Computer Society, Washington, pp 182–189Google Scholar
  20. 20.
    Grossglauser M, Vetterli M (2003) Locating Nodes with EASE: Last Encounter Routing in Ad Hoc Networks through Mobility Diffusion. INFOCOM 2003: 22nd Joint Conference of the Computer and Communications Societies, pp 1954–1964Google Scholar
  21. 21.
    Gundavelli S, Leung K, Devarapalli V, Chowdhury K, Patil B (2008) Proxy Mobile IPv6. RFC 5213Google Scholar
  22. 22.
    Härri J, Filali F, Bonnet C (2009) Mobility Models for Vehicular Ad Hoc Networks: A Survey and Taxonomy. IEEE Commun Surv Tutor 11(4):19–41CrossRefGoogle Scholar
  23. 23.
    Hsu W-J, Spyropoulos T, Psounis K, Helmy A (2007) Modeling Time-Variant User Mobility in Wireless Mobile Networks. INFOCOM 2007: 26th IEEE International Conference on Computer Communications. IEEE, pp 758–766Google Scholar
  24. 24.
    Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket Switched Networks and Human Mobility in Conference Environments. WDTN 2005: ACM SIGCOMM Workshop on Delay Tolerant Networks. ACM, New York, pp 224–251Google Scholar
  25. 25.
    Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs N, Braynard R (2009) Networking Named Content. CONEXT 2009: 5th ACM International Conference on emerging Networking Experiments and Technologies. ACM, New York, pp 1–12CrossRefGoogle Scholar
  26. 26.
    Johnson D, Perkins C, Arkko J (2004) Mobility Support in IPv6. RFC 3775Google Scholar
  27. 27.
    Katsaros D, Manolopoulos Y (2009) Prediction in Wireless Networks by Markov Chains. IEEE Wirel Commun 16(2):56–64CrossRefGoogle Scholar
  28. 28.
    Kim M, Kotz D, Kim S (2006) Extracting a Mobility Model from Real User Traces. INFOCOM 2006: 25th IEEE International Conference on Computer Communications. IEEE, pp 1–13Google Scholar
  29. 29.
    Ko Y, Vaidya N (2009) Geocasting in Mobile Ad Hoc Networks: Location-Based Multicast Algorithms. WMCSA 1999: 2nd IEEE Workshop on Mobile Computing Systems and Applications. IEEE, pp 101–110Google Scholar
  30. 30.
    Kodli R (ed) (2009) Mobile IPv6 Fast Handovers. RFC 5568Google Scholar
  31. 31.
    Kopparty S, Krishnamurthy SV, Faloutsos M, Tripati SK (2002) Split TCP for Mobile Ad Hoc Networks. GLOBECOM 2002: Global Telecommunications Conference. IEEE, pp 138–142Google Scholar
  32. 32.
    Kurhinen J, Korhonen V, Vapa M, Weber M (2006) Modelling Mobile Encounter Networks. PIMRC 2006: 17th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, pp 1–4Google Scholar
  33. 33.
    Lee J-K, Hou J-C (2006) Modeling Steady-State and Transient Behaviors of User Mobility: Formulation, Analysis, and Application. MOBIHOC 2006: 7th ACM international Symposium on Mobile Ad Hoc Networking and Computing. ACM, New York, pp 85–96Google Scholar
  34. 34.
    Markoulidakis JG, Lyberopoulos GL, Tsirkas DE, Sykas ED (1997) Mobility Modeling in Third-generation Mobile Telecommunications Systems. IEEE Pers Commun 4(4):41–56CrossRefGoogle Scholar
  35. 35.
    Moy J (1998) OSPF Version 2. RFC 2328Google Scholar
  36. 36.
    Nelson M, Lim B-H, Hutchins G (2005) Fast Transparent Migration for Virtual Machines. USENIX Annual Technical Conference. http://www.vmware.com/pdf/usenix_vmotion.pdf (abgerufen am 9. Nov 2009)Google Scholar
  37. 37.
    Ni S, Tseng Y, Chen Y, Sheu J (2009) The Broadcast Storm Problem in a Mobile Ad Hoc Network. MOBICOM 2009: 5th International Conference on Mobile Computing and Networks. ACM, New York, pp 151–162Google Scholar
  38. 38.
    Ott J, Seifert N, Carroll C, Wallbridge N, Kutscher D, Bergmann O (2009) The CHIANTI Architecture for Robust Mobile Internet Access. WoWMoM 2009: 10th International Symposium on a World of Wireless Mobile and Multimedia Networks, pp 1–9Google Scholar
  39. 39.
    Perkins C (2002) IP Mobility Support for IPv4. RFC 3344Google Scholar
  40. 40.
    Roth J (2005) Mobile Computing: Grundlagen, Technik, Konzepte, 2. Aufl. dpunkt Verlag, HeidelbergGoogle Scholar
  41. 41.
    Stanze O, Zitterbart M, Koch C (2006) Mobility Adaptive Self-parameterization of Routing Protocols for Mobile Adhoc Networks. WCNC 2006: IEEE Wireless Communications and Networking Conference. IEEE, pp 276–281Google Scholar
  42. 42.
    Su W, Lee S-J, Gerla M (2001) Mobility Prediction and Routing in Ad Hoc Wireless Networks. Int J Netw Manag 11(1):3–30CrossRefGoogle Scholar
  43. 43.
    Sun M, Feng W, Lai T (2001) Location Aided Broadcast in Wireless Ad Hoc Networks. GLOBECOM 2001: Global Telecommunication Conference. IEEE, pp 2842–2846Google Scholar
  44. 44.
    Tennenhouse D, Smith JM, Sincoskie WD, Wetherall D, Minden GJ (1997) A Survey on Active Network Research. IEEE Commun Mag 35(1):80–86CrossRefGoogle Scholar
  45. 45.
    TNS Infratest (2009) 12. Monitoring Faktenbericht 2009. http://www.tns-infratest.com/bmwi/download_pdf.asp?dfile=BMWi_12_Faktenbericht_2009.pdf, letzter Zugriff 13.12.2009Google Scholar
  46. 46.
    Valkó AG (1999) Cellular IP: A New Approach to Internet Host Mobility. SIGCOMM Comp Commun Rev 29:50–65CrossRefGoogle Scholar
  47. 47.
    Volovikov O, Kotilainen N, Juonoja T, Vapa M, Weber M, Vuori J (2008) Mobile Encounter Networks and Their Applications. CCNC 2008: 5th IEEE Consumer Communication and Networking Conference. IEEE, pp 1176–1180Google Scholar
  48. 48.
    White JE (1997) Mobile Agents. In: Bradshaw JM (ed) Software Agents. MIT Press, Cambridge, pp 437–472Google Scholar
  49. 49.
    Williams B, Camp T (2002) Comparison of Broadcasting Techniques for Mobile Ad Hoc Networks. MOBIHOC 2002: 3rd International Symposium on Mobile Ad Hoc Networking and Computing. ACM, New York, pp 194–205CrossRefGoogle Scholar
  50. 50.
    Yang G, Chen L, Sun T, Zhou B, Gerla M (2006) Ad-hoc Storage Overlay System (ASOS): A Delay-Tolerant Approach in MANETs. MASS 2006: IEEE International Conference on Mobile Adhoc and Sensor Systems. IEEE Computer Society, Washington, pp 296–305Google Scholar
  51. 51.
    Zimmermann H (1980) OSI Reference Model – The ISO Model of Architecture for Open Systems Interconnection. IEEE Trans Commun COM 28(4):425–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für Distributed and Multimedia SystemsUniversität WienWienÖsterreich

Personalised recommendations