Model of pattern formation in marsh ecosystems with nonlocal interactions

  • Sofya ZaytsevaEmail author
  • Junping Shi
  • Leah B. Shaw


Smooth cordgrass Spartina alterniflora is a grass species commonly found in tidal marshes. It is an ecosystem engineer, capable of modifying the structure of its surrounding environment through various feedbacks. The scale-dependent feedback between marsh grass and sediment volume is particularly of interest. Locally, the marsh vegetation attenuates hydrodynamic energy, enhancing sediment accretion and promoting further vegetation growth. In turn, the diverted water flow promotes the formation of erosion troughs over longer distances. This scale-dependent feedback may explain the characteristic spatially varying marsh shoreline, commonly observed in nature. We propose a mathematical framework to model grass–sediment dynamics as a system of reaction–diffusion equations with an additional nonlocal term quantifying the short-range positive and long-range negative grass–sediment interactions. We use a Mexican-hat kernel function to model this scale-dependent feedback. We perform a steady state biharmonic approximation of our system and derive conditions for the emergence of spatial patterns, corresponding to a spatially varying marsh shoreline. We find that the emergence of such patterns depends on the spatial scale and strength of the scale-dependent feedback, specified by the width and amplitude of the Mexican-hat kernel function.


Pattern formation Nonlocal interactions Marsh ecosystem Reaction–diffusion Steady state Cooperation 

Mathematics Subject Classification

Primary 92D40 92D25 35K57 Secondary 35B36 



This work is partially supported by NSF Grant DMS-1715651 and DMS-1313093. We also thank Romuald N. Lipcius and Matthew L. Kirwan for helpful discussion.


  1. Adams J, Grobler A, Rowe C, Riddin T, Bornman T, Ayres D (2012) Plant traits and spread of the invasive salt marsh grass, Spartina alterniflora Loisel., in the Great Brak estuary, South Africa. Afr J Mar Sci 34(3):313–322CrossRefGoogle Scholar
  2. Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am Nat 169(2):195–206CrossRefGoogle Scholar
  3. Amari S-I (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27(2):77–87MathSciNetzbMATHCrossRefGoogle Scholar
  4. Balke T, Klaassen PC, Garbutt A, van der Wal D, Herman PMJ, Bouma TJ (2012) Conditional outcome of ecosystem engineering: a case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology 153:232–238CrossRefGoogle Scholar
  5. Banerjee M, Volpert V (2016) Prey–predator model with a nonlocal consumption of prey. Chaos Interdiscip J Nonlinear Sci 26(8):083120MathSciNetzbMATHCrossRefGoogle Scholar
  6. Barbier N, Couteron P, Lefever R, Deblauwe V, Lejeune O (2008) Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. Ecology 89(6):1521–1531CrossRefGoogle Scholar
  7. Bates PW, Ren X (1996) Transition layer solutions of a higher order equation in an infinite tube. Commun Partial Differ Equ 21(1–2):109–145MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bates PW, Ren X (1997) Heteroclinic orbits for a higher order phase transition problem. Eur J Appl Math 8(02):149–163MathSciNetzbMATHCrossRefGoogle Scholar
  9. Bayliss A, Volpert V (2015) Patterns for competing populations with species specific nonlocal coupling. Math Model Nat Phenom 10(6):30–47MathSciNetzbMATHCrossRefGoogle Scholar
  10. Bertness MD (1984) Ribbed mussels and Spartina alterniflora production in a New England salt marsh. Ecology 65:1794–1807CrossRefGoogle Scholar
  11. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9(5):191–193CrossRefGoogle Scholar
  12. Bertness MD, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67(2):192–204CrossRefGoogle Scholar
  13. Billingham J (2003) Dynamics of a strongly nonlocal reaction–diffusion population model. Nonlinearity 17(1):313MathSciNetzbMATHCrossRefGoogle Scholar
  14. Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 47(1):RG1005CrossRefGoogle Scholar
  15. Bouma T, Van Duren L, Temmerman S, Claverie T, Blanco-Garcia A, Ysebaert T, Herman PMJ (2007) Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont Shelf Res 27(8):1020–1045CrossRefGoogle Scholar
  16. Bouma T, Friedrichs M, Van Wesenbeeck B, Temmerman S, Graf G, Herman PMJ (2009) Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118(2):260–268CrossRefGoogle Scholar
  17. Bouma T, Temmerman S, van Duren L, Martini E, Vandenbruwaene W, Callaghan D, Balke T, Biermans G, Klaassen P, van Steeg P et al (2013) Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology 180:57–65CrossRefGoogle Scholar
  18. Britton N (1990) Spatial structures and periodic travelling waves in an integro-differential reaction–diffusion population model. SIAM J Appl Math 50(6):1663–1688MathSciNetzbMATHCrossRefGoogle Scholar
  19. Castets V, Dulos E, Boissonade J, De Kepper P (1990) Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys Rev Lett 64(24):2953CrossRefGoogle Scholar
  20. Chen Y, Kolokolnikov T, Tzou J, Gai C (2015) Patterned vegetation, tipping points, and the rate of climate change. Eur J Appl Math 26(6):945–958MathSciNetzbMATHCrossRefGoogle Scholar
  21. Couteron P, Lejeune O (2001) Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. J Ecol 89(4):616–628CrossRefGoogle Scholar
  22. Dakos V, Kéfi S, Rietkerk M, Van Nes EH, Scheffer M (2011) Slowing down in spatially patterned ecosystems at the brink of collapse. Am Nat 177(6):E153–E166CrossRefGoogle Scholar
  23. de Jager M, Weissing FJ, van de Koppel J (2017) Why mussels stick together: spatial self-organization affects the evolution of cooperation. Evol Ecol 31:1–12CrossRefGoogle Scholar
  24. Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490(7420):388–392CrossRefGoogle Scholar
  25. Dhooge A, Govaerts W, Kuznetsov Y, Meijer H, Sautois B (2008) New features of the software Matcont for bifurcation analysis of dynamical systems. Math Comput Model Dyn Syst 14(2):147–175MathSciNetzbMATHCrossRefGoogle Scholar
  26. Dibner R, Doak D, Lombardi E (2015) An ecological engineer maintains consistent spatial patterning, with implications for community-wide effects. Ecosphere 6(9):1–17CrossRefGoogle Scholar
  27. D’Odorico P, Laio F, Ridolfi L (2006) Patterns as indicators of productivity enhancement by facilitation and competition in dryland vegetation. J Geophys Res Biogeosci 111(G3):1–7Google Scholar
  28. Fagherazzi S (2014) Coastal processes: storm-proofing with marshes. Nat Geosci 7(10):701–702CrossRefGoogle Scholar
  29. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, van de Koppel J, Rybczyk JM, Reyes E, Craft C et al (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys 50(1):RG1002CrossRefGoogle Scholar
  30. Fagherazzi S, Mariotti G, Wiberg P, McGlathery K (2013) Marsh collapse does not require sea level rise. Oceanography 26(3):70–77CrossRefGoogle Scholar
  31. Fuentes M, Kuperman M, Kenkre V (2003) Nonlocal interaction effects on pattern formation in population dynamics. Phys Rev Lett 91(15):158104CrossRefGoogle Scholar
  32. Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Change 106(1):7–29CrossRefGoogle Scholar
  33. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Biol Cybern 12(1):30–39zbMATHGoogle Scholar
  34. Gleason ML, Elmer DA, Pien NC, Fisher JS (1979) Effects of stem density upon sediment retention by salt marsh cord grass, Spartina alterniflora loisel. Estuaries 2(4):271–273CrossRefGoogle Scholar
  35. Goodman JE, Wood ME, Gehrels WR (2007) A 17-year record of sediment accretion in the salt marshes of Maine (USA). Mar Geol 242(1–3):109–121CrossRefGoogle Scholar
  36. Gourley S, Chaplain MA, Davidson F (2001) Spatio-temporal pattern formation in a nonlocal reaction–diffusion equation. Dyn Syst Int J 16(2):173–192MathSciNetzbMATHCrossRefGoogle Scholar
  37. Green JB, Sharpe J (2015) Positional information and reaction–diffusion: two big ideas in developmental biology combine. Development 142(7):1203–1211CrossRefGoogle Scholar
  38. Halpern BS, Silliman BR, Olden JD, Bruno JP, Bertness MD (2007) Incorporating positive interactions in aquatic restoration and conservation. Front Ecol Environ 5(3):153–160CrossRefGoogle Scholar
  39. Hardaway CS Jr, Byrne RJ (1999) Shoreline management in Chesapeake Bay. Special report in Applied Marine Science and Ocean Engineering No. 356, Virginia Institute of Marine Science, William & Mary, VA, USAGoogle Scholar
  40. He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16(5):695–706 CrossRefGoogle Scholar
  41. Hiscock TW, Megason SG (2015) Mathematically guided approaches to distinguish models of periodic patterning. Development 142(3):409–419CrossRefGoogle Scholar
  42. Kéfi S, Guttal V, Brock WA, Carpenter SR, Ellison AM, Livina VN, Seekell DA, Scheffer M, van Nes EH, Dakos V (2014) Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9(3):e92097CrossRefGoogle Scholar
  43. Kéfi S, Holmgren M, Scheffer M (2016) When can positive interactions cause alternative stable states in ecosystems? Funct Ecol 30(1):88–97CrossRefGoogle Scholar
  44. Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284(5421):1826–1828CrossRefGoogle Scholar
  45. Liu Q-X, Weerman EJ, Herman PMJ, Olff H, van de Koppel J (2012) Alternative mechanisms alter the emergent properties of self-organization in mussel beds. Proc R Soc Lond B Biol Sci 279:rspb20120157Google Scholar
  46. Liu Q-X, Herman PMJ, Mooij WM, Huisman J, Scheffer M, Olff H, van de Koppel J (2014) Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat Commun 5:5234CrossRefGoogle Scholar
  47. Madzvamuse A, Ndakwo HS, Barreira R (2015) Cross-diffusion-driven instability for reaction–diffusion systems: analysis and simulations. J Math Biol 70(4):709–743MathSciNetzbMATHCrossRefGoogle Scholar
  48. Mariotti G, Fagherazzi S (2010) A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J Geophys Res Earth Surf 115(F1):F01004CrossRefGoogle Scholar
  49. Martínez-García R, Lopez C (2018) From scale-dependent feedbacks to long-range competition alone: a short review on pattern-forming mechanisms in arid ecosystems. Preprint arXiv:1801.01399
  50. Martínez-García R, Calabrese JM, Hernández-García E, López C (2013) Vegetation pattern formation in semiarid systems without facilitative mechanisms. Geophys Res Lett 40(23):6143–6147CrossRefGoogle Scholar
  51. Martínez-García R, Calabrese JM, Hernández-García E, López C (2014) Minimal mechanisms for vegetation patterns in semiarid regions. Philos Trans R Soc A Math Phys Eng Sci 372(2027):20140068CrossRefGoogle Scholar
  52. Merchant SM, Nagata W (2011) Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. Theor Popul Biol 80(4):289–297zbMATHCrossRefGoogle Scholar
  53. Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, Van Wesenbeeck BK, Wolters G, Jensen K, Bouma TJ, Miranda-Lange M et al (2014) Wave attenuation over coastal salt marshes under storm surge conditions. Nat Geosci 7(10):727CrossRefGoogle Scholar
  54. Murray JD (2001) Mathematical biology. II spatial models and biomedical applications (Interdisciplinary applied mathematics), vol 18. Springer, New YorkGoogle Scholar
  55. Nakamasu A, Takahashi G, Kanbe A, Kondo S (2009) Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc Natl Acad Sci 106(21):8429–8434CrossRefGoogle Scholar
  56. Ninomiya H, Tanaka Y, Yamamoto H (2017) Reaction, diffusion and non-local interaction. J Math Biol 75(5):1203–1233MathSciNetzbMATHCrossRefGoogle Scholar
  57. Nyman JA, DeLaune RD, Roberts HH, Patrick W Jr (1993) Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar Ecol Prog Ser 96:269–279CrossRefGoogle Scholar
  58. Parshad RD, Kumari N, Kasimov AR, Abderrahmane HA (2014) Turing patterns and long-time behavior in a three-species food-chain model. Math Biosci 254:83–102MathSciNetzbMATHCrossRefGoogle Scholar
  59. Perry JE, Atkinson RB (2009) York river tidal marshes. J Coast Res 57:40–49CrossRefGoogle Scholar
  60. Priestas AM, Mariotti G, Leonardi N, Fagherazzi S (2015) Coupled wave energy and erosion dynamics along a salt marsh boundary, Hog Island Bay, Virginia, USA. J Mar Sci Eng 3(3):1041–1065CrossRefGoogle Scholar
  61. Pringle RM, Tarnita C (2017) Spatial self-organization of ecosystems: integrating multiple mechanisms of regular-pattern formation. Ann Rev Entomol 62(1):359–377CrossRefGoogle Scholar
  62. Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345(6196):566–570CrossRefGoogle Scholar
  63. Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23(3):169–175CrossRefGoogle Scholar
  64. Rosen PS (1980) Erosion susceptibility of the Virginia Chesapeake Bay shoreline. Mar Geol 34(1–2):45–59CrossRefGoogle Scholar
  65. Rovinsky AB, Menzinger M (1993) Self-organization induced by the differential flow of activator and inhibitor. Phys Rev Lett 70(6):778CrossRefGoogle Scholar
  66. Schile LM (2014) Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 9(2):e88760CrossRefGoogle Scholar
  67. Schwarz C, Bouma T, Zhang L, Temmerman S, Ysebaert T, Herman PMJ (2015) Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems. Geomorphology 250:298–307CrossRefGoogle Scholar
  68. Sheehan MR, Ellison JC (2015) Tidal marsh erosion and accretion trends following invasive species removal, Tamar estuary, Tasmania. Estuar Coast Shelf Sci 164:46–55CrossRefGoogle Scholar
  69. Shi J, Xie Z, Little K (2011) Cross-diffusion induced instability and stability in reaction–diffusion systems. J Appl Anal Comput 1(1):95–119MathSciNetzbMATHGoogle Scholar
  70. Siebert J, Schöll E (2015) Front and Turing patterns induced by Mexican-hat-like nonlocal feedback. Europhys Lett (EPL) 109(4):40014CrossRefGoogle Scholar
  71. Siero E, Doelman A, Eppinga M, Rademacher J D, Rietkerk M, Siteur K (2015) Striped pattern selection by advective reaction–diffusion systems: resilience of banded vegetation on slopes. Chaos Interdiscip J Nonlinear Sci 25(3):036411MathSciNetzbMATHCrossRefGoogle Scholar
  72. Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN, Earl K, Adams PN, Zimmerman AR (2012) Degradation and resilience in louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc Natl Acad Sci 109(28):11234–11239CrossRefGoogle Scholar
  73. Silliman BR, Schrack E, He Q, Cope R, Santoni A, van der Heide T, Jacobi R, Jacobi M, van de Koppel J (2015) Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc Natl Acad Sci 112(46):14295–14300CrossRefGoogle Scholar
  74. Stumpf RP (1983) The process of sedimentation on the surface of a salt marsh. Estuar Coast Shelf Sci 17(5):495–508CrossRefGoogle Scholar
  75. Tonelli M, Fagherazzi S, Petti M (2010) Modeling wave impact on salt marsh boundaries. J Geophys Res Oceans. CrossRefGoogle Scholar
  76. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72MathSciNetzbMATHCrossRefGoogle Scholar
  77. van de Koppel J, Herman PMJ, Thoolen P, Heip CH (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82(12):3449–3461CrossRefGoogle Scholar
  78. van de Koppel J, Rietkerk M, Dankers N, Herman PMJ (2005a) Scale-dependent feedback and regular spatial patterns in young mussel beds. Am Nat 165(3):E66–E77CrossRefGoogle Scholar
  79. van de Koppel J, van der Wal D, Bakker JP, Herman PMJ (2005b) Self-organization and vegetation collapse in salt marsh ecosystems. Am Nat 165(1):E1–E12CrossRefGoogle Scholar
  80. van der Heide T, Eklöf JS, van Nes EH, van der Zee EM, Donadi S, Weerman EJ, Olff H, Eriksson BK (2012) Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape. PLoS ONE 7(8):e42060CrossRefGoogle Scholar
  81. Van Hulzen J, Van Soelen J, Bouma T (2007) Morphological variation and habitat modification are strongly correlated for the autogenic ecosystem engineer Spartina anglica (common cordgrass). Estuar Coasts 30(1):3–11CrossRefGoogle Scholar
  82. van Wesenbeeck BK, van de Koppel J, Herman PMJ, Bouma TJ (2008) Does scale-dependent feedback explain spatial complexity in salt-marsh ecosystems? Oikos 117(1):152–159CrossRefGoogle Scholar
  83. Vandenbruwaene W, Temmerman S, Bouma T, Klaassen P, De Vries M, Callaghan D, Van Steeg P, Dekker F, Van Duren L, Martini E et al (2011) Flow interaction with dynamic vegetation patches: implications for biogeomorphic evolution of a tidal landscape. J Geophys Res Earth Surf. CrossRefGoogle Scholar
  84. Watt C, Garbary DJ, Longtin C (2010) Population structure of the ribbed mussel Geukensia demissa in salt marshes in the southern gulf of St. Lawrence, Canada. Helgol Mar Res 65(3):275CrossRefGoogle Scholar
  85. White K (1998) Spatial heterogeneity in three species, plant–parasite–hyperparasite, systems. Philos Trans R Soc B Biol Sci 353(1368):543CrossRefGoogle Scholar
  86. Yang W, Wang Q, Pan X, Li B et al (2014) Estimation of the probability of long-distance dispersal: stratified diffusion of Spartina alterniflora in the Yangtze river estuary. Am J Plant Sci 5(24):3642CrossRefGoogle Scholar
  87. Ysebaert T, Yang S-L, Zhang L, He Q, Bouma TJ, Herman PMJ (2011) Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone. Wetlands 31(6):1043–1054CrossRefGoogle Scholar
  88. Zaytseva S, Shaw LB, Lipcius RN, Shi J, Kirwan ML (2018) Pattern formation in marsh ecosystems modeled through the interaction of marsh vegetation, mussels and sediment. Manuscript in preparationGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ScienceWilliam & MaryWilliamsburgUSA
  2. 2.Department of MathematicsWilliam & MaryWilliamsburgUSA
  3. 3.Department of MathematicsUniversity of GeorgiaAthensUSA

Personalised recommendations