Advertisement

Journal of Mathematical Biology

, Volume 79, Issue 5, pp 1665–1697 | Cite as

A stochastic model for cell adhesion to the vascular wall

  • Christèle Etchegaray
  • Nicolas MeunierEmail author
Article
  • 97 Downloads

Abstract

Cell dynamics in the vicinity of the vascular wall involves several factors of mechanical or biochemical origins. It is driven by the competition between the drag force of the blood flow and the resistive force generated by the bonds created between the circulating cell and the endothelial wall. Here, we propose a minimal mathematical model for the adhesive interaction between a circulating cell and the blood vessel wall in shear flow when the cell shape is neglected. The bond dynamics in cell adhesion is modeled as a nonlinear Markovian Jump process that takes into account the growth of adhesion complexes. Performing scaling limits in the spirit of Joffe and Metivier (Adv Appl Probab 18(1):20, 1986), Ethier and Kurtz (Markov processes: characterization and convergence, Wiley, New York, 2009), we obtain deterministic and stochastic continuous models, whose analysis allow to identify a threshold shear velocity associated with the transition from cell rolling and firm adhesion. We also give an estimation of the mean stopping time of the cell resulting from this dynamics. We believe these results can have strong implications for the understanding of major biological phenomena such as cell immunity and metastatic development.

Keywords

Cell adhesion Metastatic development Immune response Atherosclerosis Stochastic process 

Mathematics Subject Classification

60J70 92C17 

Notes

Acknowledgements

The authors are very grateful to V.C. Tran and R. Voituriez for very helpful discussions and suggestions.

References

  1. Abate J, Whitt W (1992) The Fourier-series method for inverting transforms of probability distributions. Queueing Syst 10(1–2):5–87MathSciNetzbMATHCrossRefGoogle Scholar
  2. Aldous D (1989) Stopping times and tightness. II. Ann Probab 17(2):586–595MathSciNetzbMATHCrossRefGoogle Scholar
  3. Alon R, Hammer DA, Springer TA (1995) Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374(6522):539–542CrossRefGoogle Scholar
  4. Athreya KB, Ney PE (2004) Branching processes. Courier Corporation, ChelmsfordzbMATHGoogle Scholar
  5. Bansaye V, Méléard S (2015) Stochastic models for structured populations. Springer, BerlinzbMATHGoogle Scholar
  6. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627CrossRefGoogle Scholar
  7. Berkaoui A, Bossy M, Diop A (2008) Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM: PS 12:1–11MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bhatia SK, King MR, Hammer DA (2003) The state diagram for cell adhesion mediated by two receptors. Biophys J 84(4):2671–2690CrossRefGoogle Scholar
  9. Boettiger D (2007) Quantitative measurements of integrin-mediated adhesion to extracellular matrix. Method Enzymol 426:1–25CrossRefGoogle Scholar
  10. Champagnat N, Méléard S (2007) Invasion and adaptive evolution for individual-based spatially structured populations. J Math Biol 55(2):147–188MathSciNetzbMATHCrossRefGoogle Scholar
  11. Chang KC, Hammer DA (1999) The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys J 76(3):1280–1292CrossRefGoogle Scholar
  12. Davydov D, Linetsky V (2003) Pricing options on scalar diffusions: an eigenfunction expansion approach. Oper Res 51(2):185–209MathSciNetzbMATHCrossRefGoogle Scholar
  13. Dessalles R, D’Orsogna M, Chou T (2018) Exact steady-state distributions of multispecies birth-death-immigration processes: effects of mutations and carrying capacity on diversity. arXiv preprint arXiv:1806.00105
  14. Ethier SN, Kurtz TG (2009) Markov processes: characterization and convergence, vol 282. Wiley, HobokenzbMATHGoogle Scholar
  15. Follain G, Osmani N, Azevedo S, Allio G, Mercier L, Karreman M, Solecki G, Fekonja N, Hille C, Chabannes V, Dolle G, Metivet T, Prudhomme C, Ruthensteiner B, Kemmling A, Siemonsen S, Schneider T, Fiehler J, Glatzel M, Winkler F, Schwab Y, Pantel K, Harlepp S, Goetz JG (2017) Hemodynamic forces tune the arrest, adhesion and extravasation of circulating tumor cells. bioRxiv .  https://doi.org/10.1101/183046
  16. Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4):1880–1919MathSciNetzbMATHCrossRefGoogle Scholar
  17. Goetz DJ, El-Sabban ME, Pauli BU, Hammer DA (1994) Dynamics of neutrophil rolling over stimulated endothelium in vitro. Biophys J 66(6):2202CrossRefGoogle Scholar
  18. Göing-Jaeschke A, Yor M (1999) A survey and some generalizations of Bessel processes. Bernoulli 9:313–349MathSciNetzbMATHCrossRefGoogle Scholar
  19. Granger DN, Senchenkova E (2010) Inflammation and the microcirculation. Colloquium series on integrated systems physiology: from molecule to function, vol 2. Morgan & Claypool Life Sciences, San Rafael, pp 1–87Google Scholar
  20. Grec B, Maury B, Meunier N, Navoret L (2018) A 1D model of leukocyte adhesion coupling bond dynamics with blood velocity. J Theoret Biol 452:35–46MathSciNetzbMATHCrossRefGoogle Scholar
  21. Hammer D, Apte S (1992) Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63(1):35–57.  https://doi.org/10.1016/S0006-3495(92)81577-1 CrossRefGoogle Scholar
  22. Hammer DA, Lauffenburger DA (1987) A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J 52(3):475–487CrossRefGoogle Scholar
  23. Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes. Kodansha Scientific Books, North-HollandzbMATHGoogle Scholar
  24. Itô K, McKean HP (1965) Diffusion processes and their sample paths, vol 125. Grundlehren der Mathematischen Wissenschaften. Springer, BerlinzbMATHGoogle Scholar
  25. Jadhav S, Eggleton CD, Konstantopoulos K (2005) A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys J 88(1):96–104CrossRefGoogle Scholar
  26. Joffe A, Metivier M (1986) Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv Appl Probab 18(1):20MathSciNetzbMATHCrossRefGoogle Scholar
  27. Karatzas I, Shreve SE (1998) Brownian motion and stochastic calculus, vol 113. Graduate Texts in Mathematics. Springer, New YorkzbMATHCrossRefGoogle Scholar
  28. Korn C (2007) Stochastic dynamics of cell adhesion in hydrodynamic flow. Ph.D. thesis, Universität Potsdam, PotsdamGoogle Scholar
  29. Leblanc B, Scaillet O (1998) Path dependent options on yields in the affine term structure model. Finance Stoch 2(4):349–367MathSciNetzbMATHCrossRefGoogle Scholar
  30. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689CrossRefGoogle Scholar
  31. Linetsky V (2004a) Computing hitting time densities for CIR and OU diffusions: applications to mean-reverting models. J Comput Finance 7:1–22CrossRefGoogle Scholar
  32. Linetsky V (2004b) Lookback options and diffusion hitting times: a spectral expansion approach. Finance Stoch 8(3):373–398MathSciNetzbMATHCrossRefGoogle Scholar
  33. Linetsky V (2004c) The spectral decomposition of the option value. Int J Theoret Appl Finance 7(03):337–384MathSciNetzbMATHCrossRefGoogle Scholar
  34. McKean HP (1956) Elementary solutions for certain parabolic partial differential equations. Trans Am Math Soc 82(2):519–548MathSciNetzbMATHCrossRefGoogle Scholar
  35. Milišić V, Oelz D (2011) On the asymptotic regime of a model for friction mediated by transient elastic linkages. Journal de Mathématiques Pures et Appliquées 96(5):484–501MathSciNetzbMATHCrossRefGoogle Scholar
  36. Milišić V, Oelz D (2015) On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction. SIAM J Math Anal 47(3):2104–2121MathSciNetzbMATHCrossRefGoogle Scholar
  37. Nicolas A, Geiger B, Safran SA (2004) Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA 101(34):12520–12525CrossRefGoogle Scholar
  38. Preziosi L, Vitale G (2011) Mechanics of tumor growth: multiphase models, adhesion, and evolving configurations, vol 92. New trends in the physics and mechanics of biological systems: Lecture Notes of the Les Houches Summer School. Oxford University Press, Oxford, p 177Google Scholar
  39. Revuz D, Yor M (2005) Continuous martingales and Brownian motion, vol 293, 3rd edn. Grundlehren der mathematischen Wissenschaften. Springer, BerlinzbMATHGoogle Scholar
  40. Schmid-Schöounbein GW, Skalak R, Simon SI, Engler RL (1987) The interaction between leukocytes and endothelium in vivoa. Ann New York Acad Sci 516(1):348–361CrossRefGoogle Scholar
  41. Shreve SE (2004) Stochastic calculus for finance II: continuous-time models, vol 11. Springer, BerlinzbMATHCrossRefGoogle Scholar
  42. Springer TA et al (1990) Adhesion receptors of the immune system. Nature 346(6283):425–434CrossRefGoogle Scholar
  43. Vestweber D (2015) How leukocytes cross the vascular endothelium. Nat Rev Immunol 15(11):692CrossRefGoogle Scholar
  44. Zhao Y, Chien S, Skalak R (1995) A stochastic model of leukocyte rolling. Biophys J 69(4):1309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INRIA Bordeaux-Sud-OuestUniv. Bordeaux, IMBTalenceFrance
  2. 2.LaMME, CNRS UMR 8071Université Évry Val d’EssonneÉvry CedexFrance

Personalised recommendations