Advertisement

Steady-state voltage distribution in three-dimensional cusp-shaped funnels modeled by PNP

  • J. Cartailler
  • D. HolcmanEmail author
Article
  • 23 Downloads

Abstract

We study here the bulk electro-diffusion properties of micro- and nanodomains containing a cusp-shaped structure in three-dimensions when the cation concentration dominates over the anions. To determine the consequences on the voltage distribution, we use the steady-state Poisson–Nernst–Planck equation with an integral constraint for the number of charges. A non-homogeneous Neumann boundary condition is imposed on the boundary. We construct an asymptotic approximation for certain surface charge distribution that agree with numerical simulations. Finally, we analyze the consequences of several piecewise constant non-homogeneous surface charge densities, motivated by designing new nanopipettes. To conclude, when electro-neutrality is broken at the scale of hundreds of nanometers, the geometry of cusp-shaped domains influences the voltage profile, specifically inside the cusp structure. The main results are summarized in the form of new three-dimensional electrostatic laws for non-electroneutral electrolytes. These formula provide a refined characterization of voltage distribution at steady-state in neuronal microdomains such as dendritic spines, but can also be used to design nanometric patch-pipettes.

Keywords

Electrodiffusion Cusp funnel Poisson–Nernst–Planck Non electro-neutrality Asymptotics Nonlinear PDEs 

Mathematics Subject Classification

35J66 

Notes

References

  1. Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9(4):323CrossRefGoogle Scholar
  2. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67CrossRefGoogle Scholar
  3. Cartailler J, Schuss Z, Holcman D (2017a) Analysis of the Poisson–Nernst–Planck equation in a ball for modeling the voltage–current relation in neurobiological microdomains. Phys D Nonlinear Phenom 339:39–48MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cartailler J, Schuss Z, Holcman D (2017b) Geometrical effects on nonlinear electrodiffusion in cell physiology. J Nonlinear Sci 27(6):1971–2000MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cartailler J, Schuss Z, Holcman D (2017c) Electrostatics of non-neutral biological microdomains. Sci Rep 7(1):11269CrossRefGoogle Scholar
  6. Cartailler J, Kwon T, Yuste R, Holcman D (2018) Deconvolution of voltage sensor time series and electro-diffusion modeling reveal the role of spine geometry in controlling synaptic strength. Neuron 97(5):1126–1136CrossRefGoogle Scholar
  7. Delgado MI, Ward MJ, Coombs D (2015) Conditional mean first passage times to small traps in a 3-D domain with a sticky boundary: applications to T cell searching behavior in lymph nodes. Multiscale Model Simul 13(4):1224–1258MathSciNetCrossRefzbMATHGoogle Scholar
  8. Henrici P (1974) Applied and computational complex analysis, volume 1: power series, integration, conformal mapping, location of zeros. Wiley, HobokenzbMATHGoogle Scholar
  9. Hille B et al (2001) Ion channels of excitable membranes, vol 507. Sinauer, SunderlandGoogle Scholar
  10. Holcman D, Schuss Z (2012) Brownian motion in dire straits. Multiscale Model Simul 10(4):1204–1231MathSciNetCrossRefzbMATHGoogle Scholar
  11. Holcman D, Schuss Z (2015) Stochastic narrow escape in molecular and cellular biology: analysis and applications. Springer, New YorkCrossRefzbMATHGoogle Scholar
  12. Holcman D, Yuste R (2015) The new nanophysiology: regulation of ionic flow in neuronal subcompartments. Nat Rev Neurosci 16(11):685CrossRefGoogle Scholar
  13. Huckel E, Debye P (1923) Zur theorie der elektrolyte. i. gefrierpunktserniedrigung und verwandte erscheinungen. Phys Z. 24:185zbMATHGoogle Scholar
  14. Jayant K, Hirtz JJ, Jen-La Plante I, Tsai DM, De Boer WD, Semonche A, Peterka DS, Owen JS, Sahin O, Shepard KL et al (2017) Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat Nanotechnol 12(4):335CrossRefGoogle Scholar
  15. Jayant K, Wenzel M, Bando Y, Hamm JP, Mandriota N, Rabinowitz JH, Jen-La Plante I, Owen JS, Sahin O, Shepard KL et al (2019) Flexible nanopipettes for minimally invasive intracellular electrophysiology in vivo. Cell Rep 26(1):266–278CrossRefGoogle Scholar
  16. Koch C, Segev I (1989) Methods in neuronal modeling: from synapses to networks. MIT Press, CambridgeGoogle Scholar
  17. Lan W-J, Edwards MA, Luo L, Perera RT, Wu X, Martin CR, White HS (2016) Voltage-rectified current and fluid flow in conical nanopores. Acc Chem Res 49(11):2605–2613CrossRefGoogle Scholar
  18. Lindsay AE, Bernoff AJ, Ward MJ (2017) First passage statistics for the capture of a Brownian particle by a structured spherical target with multiple surface traps. Multiscale Model Simul 15(1):74–109MathSciNetCrossRefzbMATHGoogle Scholar
  19. Perry D, Momotenko D, Lazenby RA, Kang M, Unwin PR (2016) Characterization of nanopipettes. Anal Chem 88(10):5523–5530CrossRefGoogle Scholar
  20. Pillay S, Ward MJ, Peirce A, Kolokolnikov T (2010) An asymptotic analysis of the mean first passage time for narrow escape problems: part I: two-dimensional domains. Multiscale Model Simul 8(3):803–835MathSciNetCrossRefzbMATHGoogle Scholar
  21. Qian N, Sejnowski T (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol Cybern 62(1):1–15CrossRefzbMATHGoogle Scholar
  22. Schuss Z (2015) Brownian dynamics at boundaries and interfaces. Springer, BerlinGoogle Scholar
  23. Schuss Z, Nadler B, Eisenberg RS (2001) Derivation of Poisson and Nernst–Planck equations in a bath and channel from a molecular model. Phys Rev E 64(3):036116CrossRefGoogle Scholar
  24. Singer A, Norbury J (2009) A Poisson–Nernst–Planck model for biological ion channelsan asymptotic analysis in a three-dimensional narrow funnel. SIAM J Appl Math 70(3):949–968MathSciNetCrossRefzbMATHGoogle Scholar
  25. Sparreboom W, van den Berg A, Eijkel JC (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4(11):713CrossRefGoogle Scholar
  26. Ward MJ, Keller JB (1991) Nonlinear eigenvalue problems under strong localized perturbations with applications to chemical reactors. Stud Appl Math 85(1):1–28MathSciNetCrossRefzbMATHGoogle Scholar
  27. Ward MJ, Heshaw WD, Keller JB (1993) Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J Appl Math 53(3):799–828MathSciNetCrossRefzbMATHGoogle Scholar
  28. Yuste R (2010) Dendritic spines. MIT Press, CambridgeCrossRefGoogle Scholar
  29. Zampighi GA, Loo DD, Kreman M, Eskandari S, Wright EM (1999) Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol 113(4):507–524CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ecole Normale SupérieureParisFrance

Personalised recommendations