Advertisement

From Staphylococcus aureus gene regulation to its pattern formation

  • A. OelkerEmail author
  • T. Horger
  • C. Kuttler
Article

Abstract

The focus of this paper is to develop a new partial differential equation model for the pattern formation of the human pathogen Staphylococcus aureus, starting from a newly developed model of selected gene regulation mechanisms. In our model, we do not only account for the bacteria densities and nutrient concentrations, but also for the quorum sensing and biofilm components, since they enable bacteria to coordinate their behavior and provide the environment in which the colony grows. To this end, we model the relevant gene regulation systems using ordinary differential equations and therefrom derive our evolution equations for quorum sensing and biofilm environment by time-scale arguments. Furthermore, we compare and validate our model and the corresponding simulation results with biological real data observations of Staphylococcus aureus mutant colony growth in the laboratory. We show that we are able to adequately display the qualitative biological features of pattern formation in selected mutants, using the parameter changes indicated by the gene regulation mechanisms.

Keywords

Pattern formation Mathematical modeling Staphylococcus aureus Quorum sensing Biofilm Finite element simulation 

Mathematics Subject Classification

92B05 93A30 92C15 35Q80 68U20 

Notes

Acknowledgements

The authors gratefully acknowledge the kind permission to reprint the real data pictures in Figs. 8, 9, 10 and 11 from 2017; J.-C. García-Betancur et al.; eLife; Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus; https://elifesciences.org/articles/28023 (García-Betancur et al. 2017); Published and distributed under the terms of the Creative Commons Attribution License; https://creativecommons.org/licenses/by/4.0/.

References

  1. Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5:7CrossRefGoogle Scholar
  2. Audretsch C, Lopez D, Srivastava M, Wolz C, Dandekar T (2013) A semi-quantitative model of quorum-sensing in Staphylococcus aureus, approved by microarray meta-analyses and tested by mutation studies. Mol BioSyst 9(11):2665–2680CrossRefGoogle Scholar
  3. Ballal A, Manna AC (2009) Expression of the sarA family of genes in different strains of Staphylococcus aureus. Microbiology 155:2342–2352CrossRefGoogle Scholar
  4. Ben-Jacob E, Cohen I, Golding I, Kozlovsky Y (2001) Modelling branching and chiral colonial patterning of lubricating bacteria. In: Maini PK, Othmer HG (eds) Mathematical models for biological pattern formation. Springer, Berlin, pp 211–253CrossRefGoogle Scholar
  5. Bischoff M, Entenza JM, Giachino P (2001) Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol 183(17):5171–5179CrossRefGoogle Scholar
  6. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4(4):e1000052CrossRefGoogle Scholar
  7. Braess D (2003) Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  8. Brenner S, Scott R (2008) The mathematical theory of finite element methods, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  9. Bronner S, Monteil H, Prevost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200CrossRefGoogle Scholar
  10. Caiazza NC, O’Toole GA (2003) Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J Bacteriol 185(10):3214–3217CrossRefGoogle Scholar
  11. Cerca N, Brooks JL, Jefferson KK (2008) Regulation of the intercellular adhesin locus regulator (icaR) by sarA, sigmaB, and icaR in Staphylococcus aureus. J Bacteriol 190(19):6530–6533CrossRefGoogle Scholar
  12. Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredoa J (2005) Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 156(4):506–514CrossRefGoogle Scholar
  13. Cheung AL, Manna AC (2005) Role of the distal sarA promoters in SarA expression in Staphylococcus aureus. Infect Immun 73(7):4391–4394CrossRefGoogle Scholar
  14. Cue D, Lei MG, Lee CY (2012) Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol 2:38CrossRefGoogle Scholar
  15. DeDent AC, McAdow M, Schneewind O (2007) Distribution of protein A on the surface of Staphylococcus aureus. J Bacteriol 189(12):4473–4484CrossRefGoogle Scholar
  16. Dervaux J, Carmelo Magniez J, Libchaber A (2014) On growth and form of Bacillus subtilis biofilms. Interface Focus 4(6):20130051CrossRefGoogle Scholar
  17. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183(24):7341–7353CrossRefGoogle Scholar
  18. Duong AC, Cheung GYC, Otto M (2012) Interaction of phenol-soluble modulins with phosphatidylcholine vesicles. Pathogens 1:3–11CrossRefGoogle Scholar
  19. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275CrossRefGoogle Scholar
  20. García-Betancur JC, Goñi-Moreno A, Horger T, Schott M, Sharan M, Eikmeier J, Wohlmuth B, Zernecke A, Ohlsen K, Kuttler C, Lopez D (2017) Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. eLife 6:e28023CrossRefGoogle Scholar
  21. Gray B, Hall P, Gresham H (2013) Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple Grampositive bacterial infections. Sensors 13(4):5130–5166CrossRefGoogle Scholar
  22. Horger T, Kuttler C, Wohlmuth B, Zhigun A (2015) Analysis of a bacterial model with nutrient-dependent degenerate diffusion. Math Methods Appl Sci 38(17):3851–3865MathSciNetCrossRefzbMATHGoogle Scholar
  23. Jabbari S, King JR, Williams P (2012a) Cross-strain quorum sensing inhibition by Staphylococcus aureus. Part 1: a spatially homogeneous model. Bull Math Biol 74(6):1292–1325MathSciNetCrossRefzbMATHGoogle Scholar
  24. Jabbari S, King JR, Williams P (2012b) Cross-strain quorum sensing inhibition by Staphylococcus aureus. Part 2: a spatially inhomogeneous model. Bull Math Biol 74(6):1326–1353MathSciNetCrossRefzbMATHGoogle Scholar
  25. Jabbari S, King JR, Koerber AJ, Williams P (2010) Mathematical modelling of the agr operon in Staphylococcus aureus. J Math Biol 61:17–54MathSciNetCrossRefzbMATHGoogle Scholar
  26. Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shigesada N (1997) Modeling spatio-temporal patterns generated by Bacillus subtilis. J Theor Biol 188(2):177–185CrossRefGoogle Scholar
  27. Knobloch JK-M, Jäger S, Horstkotte MA, Rohde H, Mack D (2004) RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor sigmaB by repression of the negative regulator gene icaR. Infect Immun 72(7):3838–3848CrossRefGoogle Scholar
  28. Le KY, Dastgheyb S, Ho TV, Otto M (2014) Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol 4:167CrossRefGoogle Scholar
  29. Manna AC, Cheung AL (2003) SarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. Infect Immun 71(1):343–353CrossRefGoogle Scholar
  30. Matsushita M, Wakita J, Itoh H, Watanabe K, Arai T, Matsuyama T, Sakaguchi H, Mimura M (1999) Formation of colony patterns by a bacterial cell population. Physica A 274:190–199CrossRefGoogle Scholar
  31. Mhatre E, Gallegos Monterrosa R, Kovács ÁT (2014) From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J Basic Microbiol 54:1–17CrossRefGoogle Scholar
  32. Mimura M, Sakaguchi H, Matsushita M (2000) Reaction–diffusion modelling of bacterial colony patterns. Physica A 282:283–303CrossRefGoogle Scholar
  33. Müller J, Kuttler C, Hense BA, Rothballer M, Hartmann A (2006) Cell-cell communication by quorum sensing and dimensionreduction. J Math Biol 53:672–702MathSciNetCrossRefzbMATHGoogle Scholar
  34. Omae Y, Sekimizu K, Kaito C (2012) Inhibition of colony-spreading activity of Staphylococcus aureus by secretion of delta-hemolysin. J Biol Chem 287:15570–15579CrossRefGoogle Scholar
  35. Pane-Farre J, Jonas B, Hardwick SW, Gronau K, Lewis RJ, Hecker M, Engelmann S (2009) Role of RsbU in controlling sigB activity in Staphylococcus aureus following alkaline stress. J Bacteriol 191(8):2561–2573CrossRefGoogle Scholar
  36. Perez-Velazquez J, Gölgeli M, Garcia-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78:1585–1639MathSciNetCrossRefzbMATHGoogle Scholar
  37. Periasamy S, Joo H-S, Duong AC, Bach T-HL, Tan VY, Chatterjee SS, Cheung GYC, Otto M (2012) How Staphylococcus aureus biofilms develop their characteristic structure. PNAS 109(4):1281–1286CrossRefGoogle Scholar
  38. Peschel A, Otto M (2013) Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11:667–673CrossRefGoogle Scholar
  39. Queck SY, Jameson-Lee M, Villaruz AE, Bach T-HL, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorumsensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32(1):150–158CrossRefGoogle Scholar
  40. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. PNAS 107(5):2230–2234CrossRefGoogle Scholar
  41. Schmidt KA, Manna AC, Cheung AL (2003) SarT influences sarS expression in Staphylococcus aureus. Infect Immun 71(9):5139–5184CrossRefGoogle Scholar
  42. Schwartz K, Sekedat MD, Syed AK, O’Hara B, Payne DE, Lamb A, Boles BR (2012) Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 8(6):e1002744CrossRefGoogle Scholar
  43. Schwartz K, Sekedat MD, Syed AK, O’Hara B, Payne DE, Lamb A, Boles BR (2014) The AgrD N-terminal leader peptide of Staphylococcus aureus has cytolytic and amyloidogenic properties. Infect Immun 82(9):3837–3844CrossRefGoogle Scholar
  44. Seminara A, Angelini TE, Wilking JN, Vlamakis H, Ebrahim S, Kolter R, Weitz DA, Brenner MP (2012) Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. PNAS 109(4):1116–1121CrossRefGoogle Scholar
  45. Senn MM, Giachino P, Homerova D, Steinhuber A, Strassner J, Kormanec J, Flückiger U, Berger-Bächi B, Bischoff M (2005) Molecular analysis and organization of the sigmaB operon in Staphylococcus aureus. J Bacteriol 187(23):8006–8019CrossRefGoogle Scholar
  46. Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48(4):1075–1087CrossRefGoogle Scholar
  47. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11(3):157–168CrossRefGoogle Scholar
  48. Vuong C, Kidder JB, Jacobson ER, Otto M, Proctor RA, Somerville GA (2005) Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 187(9):2967–2973CrossRefGoogle Scholar
  49. Wang R, Khan BA, Cheung GYC, Bach T-HL, Jameson-Lee M, Kong K-F, Queck SY, Otto M (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Investig 121(1):238–248CrossRefGoogle Scholar
  50. Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2001) Mathematical modelling of quorum sensing in bacteria. IMA J Math Appl Med Biol 18:263–292CrossRefzbMATHGoogle Scholar
  51. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628CrossRefGoogle Scholar
  52. Xu L, Li H-, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q (2006) Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 74(1):488–496CrossRefGoogle Scholar
  53. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112(11):1620–1625CrossRefGoogle Scholar
  54. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186(6):1838–1850CrossRefGoogle Scholar
  55. Zhao L, Xue T, Shang F, Sun H, Sun B (2010) Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun 78:3506–3515CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technische Universität MünchenGarching bei MünchenGermany

Personalised recommendations