Journal of Mathematical Biology

, Volume 78, Issue 6, pp 1981–2014 | Cite as

Gene tree species tree reconciliation with gene conversion

  • Damir HasićEmail author
  • Eric Tannier


Gene tree/species tree reconciliation is a recent decisive progress in phylogenetic methods, accounting for the possible differences between gene histories and species histories. Reconciliation consists in explaining these differences by gene-scale events such as duplication, loss, transfer, which translates mathematically into a mapping between gene tree nodes and species tree nodes or branches. Gene conversion is a frequent and important evolutionary event, which results in the replacement of a gene by a copy of another from the same species and in the same gene tree. Including this event in reconciliation models has never been attempted because it introduces a dependency between lineages, and standard algorithms based on dynamic programming become ineffective. We propose here a novel mathematical framework including gene conversion as an evolutionary event in gene tree/species tree reconciliation. We describe a randomized algorithm that finds, in polynomial running time, a reconciliation minimizing the number of duplications, losses and conversions in the case when their weights are equal. We show that the space of optimal reconciliations includes an analog of the last common ancestor reconciliation, but is not limited to it. Our algorithm outputs any optimal reconciliation with a non-null probability. We argue that this study opens a research avenue on including gene conversion in reconciliation, and discuss its possible importance in biology.


Phylogenetic reconciliation Gene conversion Gene duplication Gene loss All optimal reconciliations 

Mathematics Subject Classification

92D15 05C90 92-08 68W40 



  1. Arvestad L, Berglund AC, Lagergren J, Sennblad B (2004) Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: Proceedings of the fifth annual international conference on computational molecular biology—RECOMB ’04. ACM Press, New York, pp 326–335.
  2. Bansal MS, Alm EJ, Kellis M (2012) Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12):283–291. Google Scholar
  3. Bansal MS, Alm EJ, Kellis M (2013) Reconciliation revisited: Handling multiple optima when reconciling with duplication, transfer, and loss. J Comput Biol 20(10):738–754. MathSciNetGoogle Scholar
  4. Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Tj Cho, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508(7497):494–499. Google Scholar
  5. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176(2):1035–1047. Google Scholar
  6. Bourgon R, Delorenzi M, Sargeant T, Hodder AN, Crabb BS, Speed TP (2004) The serine repeat antigen (SERA) gene family phylogeny in Plasmodium: the impact of GC content and reconciliation of gene and species trees. Mol Biol Evol 21(11):2161–2171. Google Scholar
  7. Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V (2013) Genome-scale coestimation of species and gene trees. Genome Res 23:323–330. Google Scholar
  8. Brooks DR, Ferrao AL (2005) The historical biogeography of co-evolution: emerging infectious diseases are evolutionary accidents waiting to happen. J Biogeogr 32(8):1291–1299. Google Scholar
  9. Casola C, Conant GC, Hahn MW (2012) Very low rate of gene conversion in the yeast genome. Mol Biol Evol 29(12):3817–3826. Google Scholar
  10. Chauve C, El-Mabrouk N (2009) New perspectives on gene family evolution: losses in reconciliation and a link with supertrees. In: Batzoglou S (ed) Research in computational molecular biology. Springer, Berlin, pp 46–58. Google Scholar
  11. Chauve C, Doyon JP, El-Mabrouk N (2008) Gene family evolution by duplication, speciation, and loss. J Comput Biol 15(8):1043–1062. MathSciNetGoogle Scholar
  12. Chauve C, Rafiey A, Davín A, Scornavacca C, Veber P, Boussau B, Szollosi G, Daubin V, Tannier E (2017) Maxtic: fast ranking of a phylogenetic tree by maximum time consistency with lateral gene transfers. Recommended by PCI Evol BiolGoogle Scholar
  13. Chen JM, Cooper DN, Chuzhanova N, Frec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775. Google Scholar
  14. Dasgupta B, Ferrarini S, Gopalakrishnan U, Paryani NR (2006) Inapproximability results for the lateral gene transfer problem. J Comb Optim 11(4):387–405. MathSciNetzbMATHGoogle Scholar
  15. Davín AA, Tannier E, Williams TA, Boussau B, Daubin V, Szöllosi GJ (2018) Gene transfers can date the tree of life. Nat Ecol Evol 2(5):904–909. Google Scholar
  16. Doyon JP, Chauve C, Hamel S (2008) Algorithms for exploring the space of gene tree/species tree reconciliations. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 5267 LNBI, pp 1–13.
  17. Doyon JP, Scornavacca C, Gorbunov KY, Szöllősi GJ, Ranwez V, Berry V (2010) An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier E (ed) Proceedings of the comparative genomics: international workshop, RECOMB-CG 2010, Ottawa, Canada, October 9—11, 2010. Springer, Berlin, pp 93–108. Google Scholar
  18. Doyon JP, Ranwez V, Daubin V, Berry V (2011) Models, algorithms and programs for phylogeny reconciliation. Brief Bioinform 12(5):392–400. Google Scholar
  19. Drouin G, Prat F, Ell M, Clarke GD (1999) Detecting and characterizing gene conversions between multigene family members. Mol Biol Evol 16(10):1369–1390. Google Scholar
  20. Dufayard JF, Duret L, Penel S, Gouy M, Rechenmann F, Perriere G (2005) Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases. Bioinformatics 21(11):2596–2603. Google Scholar
  21. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, SunderlandGoogle Scholar
  22. Gaut BS, Clegg MT (1993) Molecular evolution of the Adh1 locus in the genus Zea. Proc Natl Acad Sci USA 90(11):5095–5099. Google Scholar
  23. Górecki P, Tiuryn J (2006) DLS-trees: a model of evolutionary scenarios. Theor Comput Sci 359(1–3):378–399. MathSciNetzbMATHGoogle Scholar
  24. Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm EJ (2017) Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun 8(14):319. Google Scholar
  25. Halldorsson BV, Hardarson MT, Kehr B, Styrkarsdottir U, Gylfason A, Thorleifsson G, Zink F, Jonasdottir A, Jonasdottir A, Sulem P, Masson G, Thorsteinsdottir U, Helgason A, Kong A, Gudbjartsson DF, Stefansson K (2016) The rate of meiotic gene conversion varies by sex and age. Nat Genet 48(11):1377–1384. Google Scholar
  26. Hallett MT, Lagergren J (2001) Efficient algorithms for lateral gene transfer problems. In: Proceedings of the fifth annual international conference on computational biology. ACM, New York. RECOMB ’01, pp 149–156.
  27. Hao W (2010) OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs. BMC Bioinform 11:114–114. Google Scholar
  28. Hein J (1993) A heuristic method to reconstruct the history of sequences subject to recombination. J Mol Evol 36(4):396–405. Google Scholar
  29. Hsu CH, Zhang Y, Hardison RC, Program NCS, Green ED, Miller W (2010) An effective method for detecting gene conversion events in whole genomes. J Comput Biol 17:1281–1297. MathSciNetGoogle Scholar
  30. Hu F, Lin Y, Tang J (2014) MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinform 15:354. Google Scholar
  31. Hughes AL (1995) Origin and evolution of hla class-I pseudogenes. Mol Biol Evol 12:247–258. Google Scholar
  32. Iwase M, Satta Y, Hirai H, Hirai Y, Takahata N (2010) Frequent gene conversion events between the X and Y homologous chromosomal regions in primates. BMC Evol Biol 10(1):225. Google Scholar
  33. Jakobsen IB, Easteal S (1996) A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Comput Appl Biosci 12(4):291–295. Google Scholar
  34. Ji X, Griffing A, Thorne JL (2016) A phylogenetic approach finds abundant interlocus gene conversion in yeast. Mol Biol Evol 33(9):2469–2476. Google Scholar
  35. Kejnovsky E, Hobza R, Kubat Z, Widmer A, Marais GAB, Vyskot B (2007) High intrachromosomal similarity of retrotransposon long terminal repeats: evidence for homogenization by gene conversion on plant sex chromosomes? Gene 390:92–97. Google Scholar
  36. Ko WY, Kaercher KA, Giombini E, Marcatili P, Froment A, Ibrahim M, Lema G, Nyambo TB, Omar SA, Wambebe C, Ranciaro A, Hirbo JB, Tishkoff SA (2011) Effects of natural selection and gene conversion on the evolution of human glycophorins coding for mns blood polymorphisms in malaria-endemic african populations. Am J Hum Genet 88:741–754. Google Scholar
  37. Lz Gao (2004) Very low gene duplication rate in the yeast genome. Science 306(5700):1367–1370. Google Scholar
  38. Mansai SP, Innan H (2010) The power of the methods for detecting interlocus gene conversion. Genetics 184:517–527. Google Scholar
  39. Matassi G (2017) Horizontal gene transfer drives the evolution of Rh50 permeases in prokaryotes. BMC Evol Biol 17(1):2. Google Scholar
  40. McGrath CL, Casola C, Hahn MW (2009) Minimal effect of ectopic gene conversion among recent duplicates in four mammalian genomes. Genetics 182(2):615–622. Google Scholar
  41. McGuire G, Wright F, Prentice MJ (1997) A graphical method for detecting recombination in phylogenetic data sets. Mol Biol Evol 14(11):1125–1131. Google Scholar
  42. Menotti-Raymond M, Starmer WT, Sullivan DT (1991) Characterization of the structure and evolution of the Adh region of Drosophila hydei. Genetics 127(2):355–66Google Scholar
  43. Merkle D, Middendorf M, Wieseke N (2010) A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinf 11(1):S60. Google Scholar
  44. Mirarab S, Bayzid MS, Boussau B, Warnow T (2014) Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science (New York, NY) 346(1250):463. Google Scholar
  45. Nakhleh L (2013) Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol Evol (Amst) 28(12):719–728. Google Scholar
  46. Osada N, Innan H (2008) Duplication and gene conversion in the Drosophila melanogaster genome. PLoS Genet 4(12):e1000,305. Google Scholar
  47. Page RD, Charleston MA (1998) Trees within trees: phylogeny and historical associations. Trends Ecol Evol (Amst) 13(9):356–359. Google Scholar
  48. Peneder P, Wallner B, Vogl C (2017) Exchange of genetic information between Therian X and Y chromosome gametologs in old evolutionary strata. Ecol Evol 7(20):8478–8487. Google Scholar
  49. Planet PJ, Kachlany SC, Fine DH, DeSalle R, Figurski DH (2003) The widespread colonization island of actinobacillus actinomycetemcomitans. Nat Genet 34(2):193–198. Google Scholar
  50. Sawyer SA (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6(5):526–538. Google Scholar
  51. Scornavacca C, Paprotny W, Berry V, Ranwez V (2013) Representing a set of reconciliations in a compact way. J Bioinform Comput Biol 11(02):1250,025. Google Scholar
  52. Searls DB (2003) Pharmacophylogenomics: genes, evolution and drug targets. Nat Rev Drug Discov 2(8):613–623. Google Scholar
  53. Song G, Hsu CH, Riemer C, Miller W (2011a) Evaluation of methods for detecting conversion events in gene clusters. BMC Bioinform 12(Suppl 1):S45. Google Scholar
  54. Song G, Hsu CH, Riemer C, Zhang Y, Kim HL, Hoffmann F, Zhang L, Hardison RC, Green ED, Miller W (2011b) Conversion events in gene clusters. BMC Evol Biol 11(1):226. Google Scholar
  55. Storm CE, Sonnhammer EL (2002) Automated ortholog inference from phylogenetic trees and calculation of orthology reliability. Bioinformatics 18(1):92–99. Google Scholar
  56. Szöllősi GJ, Boussau B, Abby SS, Tannier E (2012) Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci USA 43:17,513–17,518. Google Scholar
  57. Szöllősi GJ, Rosikiewicz W, Boussau B, Tannier E, Daubin V (2013a) Efficient exploration of the space of reconciled gene trees. Syst Biol 62(6):901–912. Google Scholar
  58. Szöllősi GJ, Tannier E, Lartillot N, Daubin V (2013b) Lateral gene transfer from the dead. Syst Biol 62(3):386–397. Google Scholar
  59. Szöllősi GJ, Tannier E, Daubin V, Boussau B (2015) The inference of gene trees with species trees. Syst Biol 64(1):42–62. Google Scholar
  60. Teshima KM (2004) The effect of gene conversion on the divergence between duplicated genes. Genetics 166(3):1553–1560. Google Scholar
  61. Tofigh A, Hallett M, Lagergren J (2011) Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform 8(2):517–535. Google Scholar
  62. Trombetta B, Cruciani F (2017) Y chromosome palindromes and gene conversion. Hum Genet. Google Scholar
  63. Trombetta B, D’Atanasio E, Cruciani F (2017) Patterns of inter-chromosomal gene conversion on the male-specific region of the human y chromosome. Front Genet. Google Scholar
  64. van der Heijden RT, Snel B, van Noort V, Huynen MA (2007) Orthology prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinform 8:83. Google Scholar
  65. Vanhove MPM, Pariselle A, Van Steenberge M, Raeymaekers JAM, Hablützel PI, Gillardin C, Hellemans B, Breman FC, Koblmüller S, Sturmbauer C, Snoeks J, Volckaert FAM, Huyse T (2015) Hidden biodiversity in an ancient lake: phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci Rep 5(13):669. Google Scholar
  66. Vernot B, Stolzer M, Goldman A, Durand D (2008) Reconciliation with non-binary species trees. J Comput Biol 15(8):981–1006. MathSciNetGoogle Scholar
  67. Yb Chan, Ranwez V, Scornavacca C (2015) Exploring the space of gene/species reconciliations with transfers. J Math Biol 71(5):1179–1209. MathSciNetzbMATHGoogle Scholar
  68. Yb Chan, Ranwez V, Scornavacca C (2017) Inferring incomplete lineage sorting, duplications, transfers and losses with reconciliations. J Theor Biol 432:1–13. MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Inria Grenoble Rhône-AlpesMontbonnotFrance
  3. 3.CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558Univ Lyon, Université Lyon 1VilleurbanneFrance

Personalised recommendations