Advertisement

Calibration of parameters in Dynamic Energy Budget models using Direct-Search methods

  • J. V. Morais
  • A. L. Custódio
  • G. M. Marques
Article
  • 35 Downloads

Abstract

Dynamic Energy Budget (DEB) theory aims to capture the quantitative aspects of metabolism at the individual level, for all species. The parametrization of a DEB model is based on information obtained through the observation of natural populations and experimental research. Currently the DEB toolbox estimates these parameters using the Nelder–Mead Simplex method, a derivative-free direct-search method. However, this procedure presents some limitations regarding convergence and how to address constraints. Framed in the calibration of parameters in DEB theory, this work presents a numerical comparison between the Nelder–Mead Simplex method and the SID-PSM algorithm, a Directional Direct-Search method for which convergence can be established both for unconstrained and constrained problems. A hybrid version of the two methods, named as Simplex Directional Direct-Search, provides a robust and efficient algorithm, able to solve the constrained optimization problems resulting from the parametrization of the biological models.

Keywords

Dynamic Energy Budget theory Nelder–Mead Simplex algorithm Directional Direct-Search methods Constrained optimization 

Mathematics Subject Classification

92-08 92B05 90C56 90C90 

References

  1. Add-my-Pet collection (2018). http://www.bio.vu.nl/thb/deb/deblab/add_my_pet
  2. Audet C, Dennis J (2003) Analysis of generalized pattern searches. SIAM J Optim 13:889–903MathSciNetCrossRefGoogle Scholar
  3. Audet C, Dennis J (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17:188–217MathSciNetCrossRefGoogle Scholar
  4. Audet C, Tribes C (2018) Mesh-based Nelder–Mead algorithm for inequality constrained optimization. Comput Optim Appl.  https://doi.org/10.1007/s10589-018-0016-0
  5. Baas J, Augustine S, Marques GM, Dorne J-L (2018) Dynamic energy budget models in ecological risk assessment: from principles to applications. Sci Total Environ 628–629:249–260CrossRefGoogle Scholar
  6. Box MJ (1965) A new method of constrained optimization and a comparison with other methods. Comput J 8:42–52MathSciNetCrossRefGoogle Scholar
  7. Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. MPS-SIAM series on optimization. SIAM, PhiladelphiaCrossRefGoogle Scholar
  8. Custódio AL, Rocha H, Vicente LN (2010) Incorporating minimum Frobenius norm models in direct search. Comput Optim Appl 46:265–278MathSciNetCrossRefGoogle Scholar
  9. Custódio AL, Vicente LN (2007) Using sampling and simplex derivatives in pattern search methods. SIAM J Optim 18:537–555MathSciNetCrossRefGoogle Scholar
  10. Fan E (2002) Global optimization of Lennard–Jones atomic clusters. Master Thesis, McMaster University, Hamilton, CanadaGoogle Scholar
  11. Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. Math Program 91:239–269MathSciNetCrossRefGoogle Scholar
  12. Guin J (1968) Modification of the complex method of constrained optimization. Comput J 10:416–417CrossRefGoogle Scholar
  13. Hare WL (2010) Using derivative free optimization for constrained parameter selection in a home and community care forecasting model. In: International perspectives on operations research and health care, Proceedings of the 34th meeting of the EURO working group on operational research applied to health sciences, pp 61–73Google Scholar
  14. Jager T, Barsi A, Hamda NT, Martin BT, Zimmer EI, Ducrot V (2014) Dynamic energy budgets in population ecotoxicology: applications and outlook. Ecol Model 280:140–147CrossRefGoogle Scholar
  15. Kelley CT (1999) Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient decrease condition. SIAM J Optim 10:43–55MathSciNetCrossRefGoogle Scholar
  16. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353CrossRefGoogle Scholar
  17. Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct-search: new perspectives on some classical and modern methods. SIAM Rev 45:385–482MathSciNetCrossRefGoogle Scholar
  18. Kooijman SALM (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282CrossRefGoogle Scholar
  19. Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation. Cambridge University Press, CambridgeGoogle Scholar
  21. Kooijman SALM (2011) Basic methods in theoretical biology. Part of the DEB telecourse. Vrije Universiteit, AmsterdamGoogle Scholar
  22. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112–147MathSciNetCrossRefGoogle Scholar
  23. Le Floc’h F (2012) Issues of Nelder–Mead simplex optimisation with constraints. SSRN eLibrary, 2097904Google Scholar
  24. Lewis RM, Torczon V (2000) Pattern search methods for linearly constrained minimization. SIAM J Optim 10:917–941MathSciNetCrossRefGoogle Scholar
  25. Lika K, Kearney MR, Kooijman SALM (2011) The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model II: properties and preliminary patterns. J Sea Res 66:278–288CrossRefGoogle Scholar
  26. Marques GM, Lika K, Augustine S, Pecquerie L, Kooijman S (2018) Fitting multiple models to multiple data sets. J Sea Res.  https://doi.org/10.1016/j.seares.2018.07.004
  27. McKinnon KIM (1998) Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J Optim 9:148–158MathSciNetCrossRefGoogle Scholar
  28. Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20:172–191MathSciNetCrossRefGoogle Scholar
  29. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313MathSciNetCrossRefGoogle Scholar
  30. Nisbet RM, Muller EB, Lika K, Kooijman SALM (2000) From molecules to ecosystems through dynamic energy budget models. J Anim Ecol 69:913–926CrossRefGoogle Scholar
  31. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  32. Price CJ, Coope ID, Byatt D (2002) A convergent variant of the Nelder–Mead algorithm. J Optim Theory Appl 113:5–19MathSciNetCrossRefGoogle Scholar
  33. Sousa T, Domingos T, Kooijman SALM (2008) From empirical patterns to theory: a formal metabolic theory of life. Philos Trans R Soc B 363:2453–2464CrossRefGoogle Scholar
  34. Sousa T, Domingos T, Poggiale JC, Kooijman SALM (2010) Dynamic Energy Budget theory restores coherence in biology. Philos Trans R Soc B 365:3413–3428CrossRefGoogle Scholar
  35. Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7:1–25MathSciNetCrossRefGoogle Scholar
  36. Tseng P (1999) Fortified-descent simplicial search method: a general approach. SIAM J Optim 10:269–288MathSciNetCrossRefGoogle Scholar
  37. van der Meer J (2006) An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. J Sea Res 56:85–102CrossRefGoogle Scholar
  38. Vicente LN, Custódio AL (2012) Analysis of direct searches for discontinuous functions. Math Program 133:299–325MathSciNetCrossRefGoogle Scholar
  39. von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. V. Morais
    • 1
  • A. L. Custódio
    • 2
  • G. M. Marques
    • 1
  1. 1.MARETEC - Marine, Environment and Technology Center, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Department of MathematicsFCT-UNL-CMACaparicaPortugal

Personalised recommendations