Journal of Mathematical Biology

, Volume 78, Issue 4, pp 1115–1145 | Cite as

Regions of multistationarity in cascades of Goldbeter–Koshland loops

  • Magalí Giaroli
  • Frédéric Bihan
  • Alicia DickensteinEmail author


We consider cascades of enzymatic Goldbeter–Koshland loops (Goldbeter and Koshland in Proc Natl Acad Sci 78(11):6840–6844, 1981) with any number n of layers, for which there exist two layers involving the same phosphatase. Even if the number of variables and the number of conservation laws grow linearly with n, we find explicit regions in reaction rate constant and total conservation constant space for which the associated mass-action kinetics dynamical system is multistationary. Our computations are based on the theoretical results of our companion paper (Bihan, Dickenstein and Giaroli 2018, preprint: arXiv:1807.05157) which are inspired by results in real algebraic geometry by Bihan et al. (SIAM J Appl Algebra Geom, 2018).


Enzymatic cascades Goldbeter–Koshland loops Sparse polynomial systems Multistationarity 

Mathematics Subject Classification

92C42 80A30 14P99 14L32 



The authors are grateful to the Kurt and Alice Wallenberg Foundation and to the Institut Mittag-Leffler, Sweden, for their support to work on this project. We are also grateful to the Mathematics Department of the Royal Institute of Technology, Sweden, for the wonderful hospitality we enjoyed, and to the French Program PREFALC and the University of Buenos Aires, which made possible the visit of F. Bihan.


  1. Banaji M, Pantea C (2018) The inheritance of nondegenerate multistationarity in chemical reaction networks. SIAM J Appl Math 78(2):1105–1130MathSciNetCrossRefzbMATHGoogle Scholar
  2. Basu S, Pollack R, Coste-Roy MF (2007) Algorithms in real algebraic geometry. Springer Science & Business Media, New YorkzbMATHGoogle Scholar
  3. Bihan F, Santos F, Spaenlehauer PJ (2018) A polyhedral method for sparse systems with many positive solutions. SIAM J Appl Algebra Geom (to appear) Google Scholar
  4. Catozzi S, Di-Bella JP, Ventura AC, Sepulchre JA (2016) Signaling cascades transmit information downstream and upstream but unlikely simultaneously. BMC Syst Biol 10(1):84CrossRefGoogle Scholar
  5. Conradi C, Mincheva M (2014) Catalytic constants enable the emergence of bistability in dual phosphorylation. J R Soc Interface 11(95):20140158CrossRefGoogle Scholar
  6. Conradi C, Flockerzi D, Raisch J (2008) Multistationarity in the activation of a mapk: parametrizing the relevant region in parameter space. Math Biosci 211(1):105–131MathSciNetCrossRefzbMATHGoogle Scholar
  7. Conradi C, Feliu E, Mincheva M, Wiuf C (2017) Identifying parameter regions for multistationarity. PLoS Comput Biol 13(10):e1005751CrossRefGoogle Scholar
  8. Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J Appl Math 65(5):1526–1546MathSciNetCrossRefzbMATHGoogle Scholar
  9. Craciun G, Feinberg M (2006) Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J Appl Math 66(4):1321–1338MathSciNetCrossRefzbMATHGoogle Scholar
  10. De Loera JA, Rambau J, Santos F (2010) Triangulations structures for algorithms and applications. Springer, New YorkzbMATHGoogle Scholar
  11. Feliu E, Wiuf C (2012) Enzyme-sharing as a cause of multi-stationarity in signalling systems. J R Soc Interface 9(71):1224–1232CrossRefGoogle Scholar
  12. Feliu E, Wiuf C (2013) Simplifying biochemical models with intermediate species. J R Soc Interface 10(87):20130484CrossRefGoogle Scholar
  13. Feliu E, Knudsen M, Andersen LN, Wiuf C (2012) An algebraic approach to signaling cascades with n layers. Bull Math Biol 74(1):45–72MathSciNetCrossRefzbMATHGoogle Scholar
  14. Flockerzi D, Conradi C (2008) Subnetwork analysis for multistationarity in mass action kinetics. J Phys Conf Ser 138:012006CrossRefGoogle Scholar
  15. Gatermann K, Wolfrum M (2005) Bernstein’s second theorem and viro’s method for sparse polynomial systems in chemistry. Adv Appl Math 34(2):252–294MathSciNetCrossRefzbMATHGoogle Scholar
  16. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci 78(11):6840–6844MathSciNetCrossRefGoogle Scholar
  17. Goyal Y, Jindal GA, Pelliccia JL, Yamaya K, Yeung E, Futran AS, Burdine RD, Schüpbach T, Shvartsman SY (2017) Divergent effects of intrinsically active mek variants on developmental ras signaling. Nat Genet 49(3):465CrossRefGoogle Scholar
  18. Holstein K, Flockerzi D, Conradi C (2013) Multistationarity in sequential distributed multisite phosphorylation networks. Bull Math Biol 75(11):2028–2058MathSciNetCrossRefzbMATHGoogle Scholar
  19. Joshi B, Shiu A (2013) Atoms of multistationarity in chemical reaction networks. J Math Chem 51(1):153–178MathSciNetzbMATHGoogle Scholar
  20. Kothamachu VB, Feliu E, Cardelli L, Soyer OS (2015) Unlimited multistability and boolean logic in microbial signalling. J R Soc Interface 12(108):20150234CrossRefGoogle Scholar
  21. Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX (2016) The ras/raf/mek/erk signaling pathway and its role in the occurrence and development of hcc. Oncol Lett 12(5):3045–3050CrossRefGoogle Scholar
  22. Millán MP, Turjanski AG (2015) Mapks networks and their capacity for multistationarity due to toric steady states. Math Biosci 262:125–137MathSciNetCrossRefzbMATHGoogle Scholar
  23. Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A (2016) Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found Comput Math 16(1):69–97MathSciNetCrossRefzbMATHGoogle Scholar
  24. Pérez Millán M, Dickenstein A (2018) The structure of messi biological systems. SIAM J Appl Dyn Syst 17(2):1650–1682MathSciNetCrossRefzbMATHGoogle Scholar
  25. Singular A (2007) Computer algebra system for polynomial computations. See the SINGULAR homepage at
  26. Wang L, Sontag ED (2008) On the number of steady states in a multiple futile cycle. J Math Biol 57(1):29–52MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dto. de Matemática, FCEN, Universidad de Buenos Aires, and IMAS (UBA-CONICET)Ciudad UniversitariaBuenos AiresArgentina
  2. 2.Laboratoire de MathématiquesUniversité Savoie Mont BlancLe Bourget-du-Lac CedexFrance

Personalised recommendations