Journal of Mathematical Biology

, Volume 78, Issue 4, pp 919–942 | Cite as

Crosstalk in transition: the translocation of Akt

  • Catheryn W. Gray
  • Adelle C. F. CosterEmail author


Akt/PKB is an important crosstalk node at the junction between a number of major signalling pathways in the mammalian cell. As a significant nutrient sensor, Akt plays a central role in many cellular processes, including cell growth, cell survival and glucose metabolism. The dysregulation of Akt signalling is implicated in the development of many diseases, from diabetes to cancer. The translocation of Akt from cytosol to plasma membrane is a crucial step in Akt activation. Akt is initially synthesized on the endoplasmic reticulum, but translocates to the plasma membrane (PM) in response to insulin stimulation, where it may be activated. The Akt is then recycled to the cytoplasm. The activated Akt may propagate signals to downstream substrates both at the PM and in the cytosol, hence understanding the translocation dynamics is an important step in dissecting the signalling system. At the present time, however, knowledge concerning the translocation of either activated and unactivated Akt is scant. Here we present a simple, deterministic, three-compartment ordinary differential equation model of Akt translocation in vitro. This model can reproduce the salient features of Akt translocation in a manner consistent with the experimental data. Furthermore, we demonstrate that this system is equivalent to a damped harmonic oscillator, and analyse the steady state and transient behaviour of the model over the entire parameter space.


Insulin signaling Akt/PKB Signalling ODE model 

Mathematics Subject Classification

92B05 92C37 92C40 



The authors would like to thank the anonymous reviewers for their helpful and insightful comments.


  1. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice NCP, Hemmings B (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541CrossRefGoogle Scholar
  2. Andjelkovic M, Alessi D, Meier R, Fernandez A, Lamb N, Frech M, Cron P, Cohen P, Lucocq J, Hemmings B (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272(50):31515–31524CrossRefGoogle Scholar
  3. Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182(1):31–48CrossRefGoogle Scholar
  4. Bates P, Liang Y, Shingleton A (2013) Growth regulation and the insulin signaling pathway. Netw Heterog Med 8(1):65–78MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of Akt kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86CrossRefGoogle Scholar
  6. Boyce W, DiPrima R (2005) Elementary differential equations and boundary value problems, 8th edn. Wiley, New YorkzbMATHGoogle Scholar
  7. Calleja V, Alcor D, Laguerre M, Park J, Vojnovic B, Hemmings B, Downward J, Parker P, Larijani B (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5(4):e95CrossRefGoogle Scholar
  8. Chavez J, Summers S (2012) A ceramide-centric view of insulin resistance. Cell Metabol 15(5):585–594CrossRefGoogle Scholar
  9. Dalle Pezze P, Sonntag A, Thien A, Prentzell M, Godel M, Fischer S, Neumann-Haefelin E, Huber T, Baumeister R, Shanley D (2012) A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal 5(217):ra25Google Scholar
  10. Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100(4):387–390CrossRefGoogle Scholar
  11. Gonzalez E, McGraw T (2009) The Akt kinases. Cell Cycle 8(16):2502–2508CrossRefGoogle Scholar
  12. Gonzalez E, McGraw T (2009) Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc Natl Acad Sci 106(17):7004–7009CrossRefGoogle Scholar
  13. Gonzalez E, McGraw TE (2006) Insulin signaling diverges into Akt-dependent and-independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane. Mol Biol Cell 17(10):4484–4493CrossRefGoogle Scholar
  14. Gray CW, Coster AC (2016) The Akt switch model: is location sufficient? J Theor Biol 398:103–111MathSciNetCrossRefzbMATHGoogle Scholar
  15. Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, Kim J, Saito K, Saeki M, Shirouzu M, Yokoyama S, Konagaya A (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J 373:451–463CrossRefGoogle Scholar
  16. Hers I, Vincent E, Tavaré J (2011) Akt signalling in health and disease. Cell Signal 23(10):1515–1527CrossRefGoogle Scholar
  17. Hill M, Clark S, Tucker D, Birnbaum M, James D, Macaulay SL (1999) A role for protein kinase B \(\beta \)/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 19(11):7771–7781CrossRefGoogle Scholar
  18. Hresko R, Mueckler M (2005) mTOR\(\cdot \)RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280(49):40406CrossRefGoogle Scholar
  19. Jezewski A, Larson J, Wysocki B, Davis P, Wysocki T (2014) A novel method for simulating insulin mediated GLUT4 translocation. Biotechnol Bioeng 111(12):2454–2465CrossRefGoogle Scholar
  20. Kohn A, Summers S, Birnbaum M, Roth R (1996) Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271(49):31372–31378CrossRefGoogle Scholar
  21. Kubota H, Noguchi R, Toyoshima Y, Ozaki Y, Uda S, Watanabe K, Ogawa W, Kuroda S (2012) Temporal coding of insulin action through multiplexing of the Akt pathway. Mol Cell 46:820–832CrossRefGoogle Scholar
  22. Landersdorfer C, Jusko W (2008) Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet 47(7):417–448CrossRefGoogle Scholar
  23. Masip ME, Huebinger J, Christmann J, Sabet O, Wehner F, Konitsiotis A, Fuhr GR, Bastiaens PI (2016) Reversible cryo-arrest for imaging molecules in living cells at high spatial resolution. Nat Methods 13(8):665CrossRefGoogle Scholar
  24. Mathew S, Banerjee I (2014) Quantitative analysis of robustness of dynamic response and signal transfer in insulin mediated PI3K/Akt pathway. Comput Chem Eng 71:715–727CrossRefGoogle Scholar
  25. Mathew S, Sundararaj S, Mamiya H, Banerjee I (2014) Regulatory interactions maintaining self-renewal of human embryonic stem cells as revealed through a systems analysis of PI3K/Akt pathway. Bioinformatics 30:2334–2342CrossRefGoogle Scholar
  26. Meyer R, DAlessandro LA, Kar S, Kramer B, She B, Kaschek D, Hahn B, Wrangborg D, Karlsson J, Kvarnstrom M (2012) Heterogeneous kinetics of Akt signaling in individual cells are accounted for by variable protein concentration. Front Physiol 3:451CrossRefGoogle Scholar
  27. Mosca E, Alfieri R, Maj C, Bevilacqua A, Canti G, Milanesi L (2011) Computational modeling of the metabolic states regulated by the kinase Akt. Front Physiol 3:418–418Google Scholar
  28. Nayak S, Siddiqui J, Varner J (2011) Modelling and analysis of an ensemble of eukaryotic translation initiation models. Syst Biol IET 5(1):2–14CrossRefGoogle Scholar
  29. Ng Y, Ramm G, Burchfield J, Coster A, Stöckli J, James D (2010) Cluster analysis of insulin action in adipocytes reveals a key role for Akt at the plasma membrane. J Biol Chem 285(4):2245–2257CrossRefGoogle Scholar
  30. Ng Y, Ramm G, Lopez J, James D (2008) Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes. Cell Metabol 7(4):348–356CrossRefGoogle Scholar
  31. Nijhout H, Callier V (2013) A new mathematical approach for qualitative modeling of the insulin-TOR-MAPK network. Front Physiol 4:245CrossRefGoogle Scholar
  32. Nim TH, Luo L, White JK, Clément MV, Tucker-Kellogg L (2015) Non-canonical activation of Akt in serum-stimulated fibroblasts, revealed by comparative modeling of pathway dynamics. PLoS Comput Biol 11(11):e1004505CrossRefGoogle Scholar
  33. Norris DM, Yang P, Krycer JR, Fazakerley DJ, James DE, Burchfield JG (2017) An improved Akt reporter reveals intra-and inter-cellular heterogeneity and oscillations in signal transduction. J Cell Sci 130(16):2757–2766CrossRefGoogle Scholar
  34. Park C, Schneider I, Haugh J (2003) Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J Biol Chem 278(39):37064–37072CrossRefGoogle Scholar
  35. Powell DJ, Hajduch E, Kular G, Hundal HS (2003) Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKC\(\zeta \)-dependent mechanism. Mol Cell Biol 23(21):7794–7808CrossRefGoogle Scholar
  36. Romanelli R, LeBeau A, Fulmer C, Lazzarino D, Hochberg A, Wood T (2007) Insulin-like growth factor type-I receptor internalization and recycling mediate the sustained phosphorylation of Akt. J Biol Chem 282(31):22513–22524CrossRefGoogle Scholar
  37. Rowland A, Fazakerley D, James D (2011) Mapping insulin/GLUT4 circuitry. Traffic 12(6):672–681CrossRefGoogle Scholar
  38. Sarbassov D, Guertin D, Ali S, Sabatini D (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101CrossRefGoogle Scholar
  39. Sedaghat A, Sherman A, Quon M (2002) A mathematical model of metabolic insulin signaling pathways. Am J Physiol Endocrinol Metabol 283(5):1084–1101CrossRefGoogle Scholar
  40. Strang G (2014) Differential equations and linear algebra. Wellesley-Cambridge Press, WellesleyzbMATHGoogle Scholar
  41. Stratford S, Dewald D, Summers S (2001) Ceramide dissociates 3\(^{\prime }\)-phosphoinositide production from pleckstrin homology domain translocation. J Biochem 354:359–368CrossRefGoogle Scholar
  42. Tan S, Ng Y, Meoli C, Kumar A, Khoo P, Fazakerley D, Junutula J, Vali S, James D, Stöckli J (2012) Amplification and demultiplexing in insulin-regulated Akt protein kinase pathway in adipocytes. J Biol Chem 287(9):6128–6138CrossRefGoogle Scholar
  43. Tan W, Popel A, Mac Gabhann F (2013) Computational model of Gab1/2-dependent VEGFR2 pathway to Akt activation. PloS One 8(6):e67438CrossRefGoogle Scholar
  44. Tang X, Powelka AM, Soriano NA, Czech MP, Guilherme A (2005) Pten, but not ship2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 280(23):22523–22529CrossRefGoogle Scholar
  45. Taniguchi C, Emanuelli B, Kahn C (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96CrossRefGoogle Scholar
  46. Tian T, Wu F (2013) Robustness analysis of the PI3K/AktT cell signaling module. Cancer 3:4Google Scholar
  47. Toker A, Marmiroli S (2014) Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul 55:28–38CrossRefGoogle Scholar
  48. Tsuchiya A, Kanno T, Nishizaki T (2014) PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway. J Endocrinol 220(1):49–59CrossRefGoogle Scholar
  49. Wang Q, Somwar R, Bilan P, Liu Z, Jin J, Woodgett J, Klip A (1999) Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol 19(6):4008–4018CrossRefGoogle Scholar
  50. Wirkus SA, Swift RJ (2006) A course in ordinary differential equations. CRC Press, LondonGoogle Scholar
  51. Won K, Kim B, Han G, Lee K, Jung Y, Kim H, Song K, Chung K, Won M (2014) NSC126188 induces apoptosis of prostate cancer PC-3 cells through inhibition of Akt membrane translocation, FoxO3a activation, and RhoB transcription. Apoptosis 19(1):179–190CrossRefGoogle Scholar
  52. Zhao Y, Lin Y, Zhang H, Mañas A, Tang W, Zhang Y, Wu D, Lin A, Xiang J (2015) Ubl4A is required for insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching. Proc Natl Acad Sci 112(31):9644–9649CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUNSWSydneyAustralia

Personalised recommendations