Advertisement

Journal of Mathematical Biology

, Volume 78, Issue 3, pp 655–682 | Cite as

Counter-propagating wave patterns in a swarm model with memory

  • Angelika ManhartEmail author
Article
  • 97 Downloads

Abstract

Hyperbolic transport-reaction equations are abundant in the description of movement of motile organisms. Here, we focus on a system of four coupled transport-reaction equations that arises from an age-structuring of a species of turning individuals. By modeling how the behavior depends on the time since the last reversal, we introduce a memory effect. The highlight consists of the explicit construction and characterization of counter-propagating traveling waves, patterns which have been observed in bacterial colonies. Stability analysis reveals conditions for the wave formation as well as pulsating-in-time spatially constant solutions.

Keywords

Traveling waves Hyperbolic equations Viscous limit Myxobacteria Wave formation Age-structured equations Pattern formation 

Mathematics Subject Classification

35L60 35Q70 35B32 35B35 35B36 35B40 35B65 34D20 92D25 92D50 

Notes

Acknowledgements

The author wants to express gratitude to P. Degond and C. Schmeiser for the insightful discussions and A. Mogilner for his support.

References

  1. Anguige K, Schmeiser C (2009) A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion. J Math Biol 58(3):395–427MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bellomo N, Bellouquid A, Nieto J, Soler J (2007) Multicellular biological growing systems: hyperbolic limits towards macroscopic description. Math Models Methods Appl Sci 17(supp01):1675–1692MathSciNetCrossRefzbMATHGoogle Scholar
  3. Burger M, Capasso V, Morale D (2007) On an aggregation model with long and short range interactions. Nonlinear Anal Real World Appl 8(3):939–958MathSciNetCrossRefzbMATHGoogle Scholar
  4. Carrillo JA, D’orsogna M, Panferov V (2008) Double milling in self-propelled swarms from kinetic theory. Kinet Relat Models 2:363–378MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, CambridgezbMATHGoogle Scholar
  6. Charlesworth B et al (1994) Evolution in age-structured populations, vol 2. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  7. Degond P, Manhart A, Yu H (2017) A continuum model for nematic alignment of self-propelled particles. Discrete Contin Dyn Syst Ser B 22:1295–1327MathSciNetCrossRefzbMATHGoogle Scholar
  8. Degond P, Manhart A, Yu H (2018) An age-structured continuum model for myxobacteria. Math Models Methods Appl Sci.  https://doi.org/10.1142/s0218202518400043 MathSciNetGoogle Scholar
  9. Edelstein-Keshet L, Watmough J, Grunbaum D (1998) Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J Math Biol 36(6):515–549MathSciNetCrossRefzbMATHGoogle Scholar
  10. Eftimie R (2012) Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J Math Biol 65(1):35–75MathSciNetCrossRefzbMATHGoogle Scholar
  11. Eftimie R, De Vries G, Lewis M (2007) Complex spatial group patterns result from different animal communication mechanisms. Proc Natl Acad Sci 104(17):6974–6979MathSciNetCrossRefzbMATHGoogle Scholar
  12. Erban R, Haskovec J (2012) From individual to collective behaviour of coupled velocity jump processes: a locust example. Kinet Relat Mod 5(4):817–842MathSciNetCrossRefzbMATHGoogle Scholar
  13. Goldstein S (1951) On diffusion by discontinuous movements, and on the telegraph equation. Quart J Mech Appl Math 4(2):129–156MathSciNetCrossRefzbMATHGoogle Scholar
  14. Hadeler KP (1999) Reaction transport systems in biological modelling. In: Capasso V, Diekmann O (eds) Mathematics inspired by biology. Springer, Berlin, pp 95–150CrossRefGoogle Scholar
  15. Hillen T (2002) Hyperbolic models for chemosensitive movement. Math Models Methods Appl Sci 12(07):1007–1034MathSciNetCrossRefzbMATHGoogle Scholar
  16. Hillen T, Stevens A (2000) Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal Real World Appl 1(3):409–433MathSciNetCrossRefzbMATHGoogle Scholar
  17. Holcombe M, Adra S, Bicak M, Chin S, Coakley S, Graham AI, Green J, Greenough C, Jackson D, Kiran M et al (2012) Modelling complex biological systems using an agent-based approach. Integrat Biol 4(1):53–64CrossRefGoogle Scholar
  18. Holmes EE (1993) Are diffusion models too simple? A comparison with telegraph models of invasion. Am Nat 142(5):779–795CrossRefGoogle Scholar
  19. Igoshin O, Mogilner A, Welch R, Kaiser D, Oster G (2001) Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc Natl Acad Sci USA 98(26):14,913–14,918CrossRefGoogle Scholar
  20. Igoshin O, Welch R, Kaiser D, Oster G (2004) Waves and aggregation patterns in myxobacteria. Proc Natl Acad Sci USA 101(12):4256–4261CrossRefGoogle Scholar
  21. Kac M (1974) A stochastic model related to the telegrapher’s equation. Rocky Mt J Math 4(3):497–509MathSciNetCrossRefzbMATHGoogle Scholar
  22. Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26(3):399–415CrossRefzbMATHGoogle Scholar
  23. Lutscher F, Stevens A (2002) Emerging patterns in a hyperbolic model for locally interacting cell systems. J Nonlinear Sci 12(6):619–640MathSciNetCrossRefzbMATHGoogle Scholar
  24. Manhart A, Mogilner A (2016) Agent-based modeling in cell biology: case study in cleavage furrow models. Mol Biol Cell 27:3379–84CrossRefGoogle Scholar
  25. Meiss JD (2007) Differential dynamical systems, vol 14. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  26. Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38(6):534–570MathSciNetCrossRefzbMATHGoogle Scholar
  27. Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263–298MathSciNetCrossRefzbMATHGoogle Scholar
  28. Pakdaman K, Perthame B, Salort D (2009) Dynamics of a structured neuron population. Nonlinearity 23:55MathSciNetCrossRefzbMATHGoogle Scholar
  29. Primi I, Stevens A, Velazquez JJ (2013) Pattern forming instabilities driven by non-diffusive interaction. Netw Heterog Media 8(1):397–432MathSciNetCrossRefzbMATHGoogle Scholar
  30. Sager B, Kaiser D (1994) Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev 8(23):2793–2804CrossRefGoogle Scholar
  31. Scheel A, Stevens A (2017) Wavenumber selection in coupled transport equations. J Math Biol 75(5):1047–1073MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations