Advertisement

Sensitivity analysis of the Poisson Nernst–Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model

  • Ibrahima Dione
  • Nicolas Doyon
  • Jean Deteix
Article
  • 59 Downloads

Abstract

Biological structures exhibiting electric potential fluctuations such as neuron and neural structures with complex geometries are modelled using an electrodiffusion or Poisson Nernst–Planck system of equations. These structures typically depend upon several parameters displaying a large degree of variation or that cannot be precisely inferred experimentally. It is crucial to understand how the mathematical model (and resulting simulations) depend on specific values of these parameters. Here we develop a rigorous approach based on the sensitivity equation for the electrodiffusion model. To illustrate the proposed methodology, we investigate the sensitivity of the electrical response of a node of Ranvier with respect to ionic diffusion coefficients and the membrane dielectric permittivity.

Keywords

Electrodiffusion Finite elements Ionic concentrations Node of Ranvier Sensitivity equation method 

Mathematics Subject Classification

92B05 35Q92 

References

  1. Adams RA, Fournier JJF (2003) Sobolev spaces, vol 140. Pure and applied mathematics. Academic, New YorkzbMATHGoogle Scholar
  2. Appel JR (1997) Sensitivity calculations for conservation laws with application to discontinuous fluid flows. Ph.D. thesis, Virginia Tech., BlacksburgGoogle Scholar
  3. Ask M, Reza M (2016) Computational models in neuroscience: How real are they? A critical review of status and suggestions. Austin Neurol Neurosci 1(2):1008Google Scholar
  4. Banks HT, Bihari KL (2001) Modelling and estimating uncertainty in parameter estimation. Inverse Probl 17(1):95–112MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bathe K (1996) Finite element procedures. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  6. Belhamadia Y, Fortin A, Bourgault Y (2014) On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction–diffusion systems. J Comput Appl Math 271:233–246MathSciNetCrossRefzbMATHGoogle Scholar
  7. Biler P, Dolbeault J (2000) Long time behavior of solutions to Nernst–Planck and Debye–Hückel drift–diffusion systems. Ann Henri Poincaré 1(3):461–472.  https://doi.org/10.1007/s000230050003 MathSciNetCrossRefzbMATHGoogle Scholar
  8. Biler P, Hebisch W, Nadzieja T (1994) The Debye system: existence and large time behavior of solutions. Nonlinear Anal Theory Methods Appl 23(9):1189–1209MathSciNetCrossRefzbMATHGoogle Scholar
  9. Bischof CH, Roh L, Mauer-Oats AJ (1997) Adic: an extensible automatic differentiation tool for ANSI-C. Softw Pract Exp 27(12):1427–1456CrossRefGoogle Scholar
  10. Bolintineanu DS, Sayyed-Ahmad A, Davis HT, Kaznessis YN (2009) Poisson–Nernst–Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput Biol 5(1):1–12CrossRefGoogle Scholar
  11. Borggaard J, Bums J, Cliff E, Schreck S (1997) Computational methods for optimal design and control. In: Proceeding of the AFOSR workshop on optimal design and control, Arlington, VirginiaGoogle Scholar
  12. Brette R (2015) What is the most realistic single-compartment model of spike initiation? PLoS Comput Biol.  https://doi.org/10.1371/journal.pcbi.1004114 Google Scholar
  13. Carnevale NT, Hines ML (2004) The NEURON book. Cambridge University Press, CambridgeGoogle Scholar
  14. Cartailler J, Schuss Z, Holcman D (2017) Electrostatics of non-neutral biological microdomains. Sci Rep 7:11269CrossRefGoogle Scholar
  15. Ciarlet P, Luneville E (2009) La méthode des éléments finis: de la théorie à la pratique. Concepts généraux. I. Cours (ENSTA), Les Presses de l’ENSTAGoogle Scholar
  16. Dione I, Deteix J, Briffard T, Chamberland E, Doyon N (2016) Improved simulation of electrodiffusion in the node of Ranvier by mesh adaptation. PLoS One.  https://doi.org/10.1371/journal.pone.0161318 Google Scholar
  17. Eberhard P, Bischof C (1999) Automatic differentiation of numerical integration algorithms. Math Comput Am Math Soc 68(226):717–731MathSciNetCrossRefzbMATHGoogle Scholar
  18. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549560CrossRefzbMATHGoogle Scholar
  19. Glykys J, Egawa VDK, Balena T, Saponjian Y, Kuchibhotla K, Bacskai B, Kahle K, T TZ, Staley K (2014) Local impermeant anions establish the neuronal chloride concentration. Science 343(6171):670–675CrossRefGoogle Scholar
  20. Gow A, Devaux J (2008) Model of tight junction function in CNS myelinated axons. Neuron Glia Biol 4(4):307–317.  https://doi.org/10.1017/S1740925X09990391 CrossRefGoogle Scholar
  21. Gramse G, Dols-Perez A, Edwards MA, Fumagalli L, Gomila G (2013) Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys J 104(6):1257–1262.  https://doi.org/10.1016/j.bpj.2013.02.011 CrossRefGoogle Scholar
  22. Griewank A, Walther A (2008) Evaluating derivatives, 2nd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefzbMATHGoogle Scholar
  23. Haines J, Inglese M, Casaccia P (2011) Axonal damage in multiple sclerosis. Mt Sinai J Med 78(2):231–243CrossRefGoogle Scholar
  24. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I: nonstiff problems, 2, Revised edn. Springer, New YorkzbMATHGoogle Scholar
  25. Hille B (1992) Ionic channels of excitable membranes. Sinauer Associates, SunderlandGoogle Scholar
  26. Hobbie RK, Roth BJ (2007) Intermediate physics for medicine and biology. Biological and medical physics, biomedical engineering. Springer, New YorkzbMATHGoogle Scholar
  27. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefGoogle Scholar
  28. Holcman D, Yuste R (2015) The new nanophysiology: regulation of ionic flow in neuronal subcompartments. Nat Rev Neurosci 16:685–692CrossRefGoogle Scholar
  29. Laing CR (2014) Numerical bifurcation theory for high-dimensional neural models. J Math Neurosci 4:13MathSciNetCrossRefzbMATHGoogle Scholar
  30. Li S, Petzold L (2004) Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement. J Comput Phys 198:310–325.  https://doi.org/10.1016/j.jcp.2003.01.001 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Lopreore CL, Bartol TM, Coggan JS, Keller DX, Sosinsky GE, Ellisman MH, Sejnowski TJ (2008) Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys J 95(6):2624–2635.  https://doi.org/10.1529/biophysj.108.132167 CrossRefGoogle Scholar
  32. Lu B, Holst MJ, McCammon JA, Zhou Y (2010) Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J Comput Phys 229(19):6979–6994MathSciNetCrossRefzbMATHGoogle Scholar
  33. Malmberg CG, Maryott AA (1956) Dielectric constant of water from 0 to 100 C. J Res Natl Bur Stand 56(1):1–8CrossRefGoogle Scholar
  34. Nymeyer H, Zhou HX (2008) A method to determine dielectric constants in nonhomogeneous systems: application to biological membranes. Biophys J 94(4):1185–1193.  https://doi.org/10.1529/biophysj.107.117770 CrossRefGoogle Scholar
  35. Pods J (2014) Electrodiffusion Models of axon and extracellular space using the Poisson–Nernst–Planck equations. Ph.D. thesis, Heidelberg University LibraryGoogle Scholar
  36. Pods J, Schonke J, Bastian P (2013) Electrodiffusion models of neurons and extracellular space using the Poisson–Nernst–Planck equations—numerical simulation of the intra- and extracellular potential for an axon model. Biophys J 105(1):242–254CrossRefGoogle Scholar
  37. Qian N, Sejnowski T (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol Cybern 62:1–15CrossRefzbMATHGoogle Scholar
  38. Quarteroni AM, Valli A (2008) Numerical approximation of partial differential equations. Springer, BerlinzbMATHGoogle Scholar
  39. Schutter ED (2000) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca RatonCrossRefGoogle Scholar
  40. Sun NZ, Sun A (2015) Model calibration and parameter estimation, for environmental and water resource systems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  41. Sun Y, Sun P, Zheng B, Lin G (2016) Error analysis of finite element method for Poisson–Nernst–Planck equations. J Comput Appl Math 301(C):28–43MathSciNetCrossRefzbMATHGoogle Scholar
  42. Sylantyev S, Savtchenko L, Ermolyuk Y, Michaluk P, Rusakov D (2013) Spike-driven glutamate electrodiffusion triggers synaptic potentiation via a homer-dependent mGLUR-NMDAR link. Neuron 77(3):528–541CrossRefGoogle Scholar
  43. Tora A, Rovira X, Dione I, Bertrand H, Brabet I, Koninck YD, Doyon N, Pin J, Acher F, Goudet C (2015) Allosteric modulation of metabotropic glutamate receptors by chloride ions. FASEB J 29(10):4174–4188CrossRefGoogle Scholar
  44. Troparevsky MI, Rubio D, Saintier N (2010) Sensitivity analysis for the EEG forward problem. Front Comput Neurosci 4:138CrossRefGoogle Scholar
  45. Yuste R (2013) Electrical compartmentalization in dendritic spines. Annu Rev Neurosci 36:429–449CrossRefGoogle Scholar
  46. Zhao J, Cui S (2011) Remarks on the local existence of solutions to the Debye system. J Math Anal Appl 383(2):337–343MathSciNetCrossRefzbMATHGoogle Scholar
  47. Zheng K, Jensen TP, Savtchenko LP, Levitt JA, Suhling K, Rusakov DA (2017) Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging. Sci Rep 7:42022CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de mathématiques et statistique/Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF)Université LavalQuébecCanada

Personalised recommendations