Advertisement

Journal of Mathematical Biology

, Volume 77, Issue 3, pp 765–793 | Cite as

Local approximation of a metapopulation’s equilibrium

  • A. D. Barbour
  • R. McVinishEmail author
  • P. K. Pollett
Article
  • 133 Downloads

Abstract

We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset \(\Omega \) of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to \(q_1(z)\), the equilibrium occupation probability in Levins’s model, at any point \(z \in \Omega \) not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.

Keywords

Incidence function model Spatially realistic Levins model Equilibrium Fixed point Metapopulation 

Mathematics Subject Classification

92D40 60J10 60J27 

References

  1. Alonso D, McKane A (2002) Extinction dynamics in mainland-island metapopulations: an $ N$-patch stochastic model. Bull Math Biol 64:913–958CrossRefzbMATHGoogle Scholar
  2. Barbour AD, Pugliese A (2004) Convergence of a structured metapopulation model to Levins’s model. J Math Biol 49:468–500MathSciNetCrossRefzbMATHGoogle Scholar
  3. Barbour AD, McVinish R, Pollett PK (2015) Connecting deterministic and stochastic metapopulation models. J Math Biol 71:1481–1504MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cornell SJ, Ovaskainen O (2008) Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes. Theor Popul Biol 74:209–225CrossRefzbMATHGoogle Scholar
  5. Etienne RS (2002) A scrutiny of the Levins metapopulation model. Comments Theor Biol 7:257–281CrossRefGoogle Scholar
  6. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  7. Hanski I, Gyllenberg M (1997) Uniting two general patterns in the distribution of species. Science 275:397–400CrossRefGoogle Scholar
  8. Hirsch MW, Smith H (2005) Monotone maps: a review. J Differ Equ Appl 11:379–398MathSciNetCrossRefzbMATHGoogle Scholar
  9. Keeling MJ (2002) Using individual-based simulations to test the Levins metapopulation paradigm. J Anim Ecol 71:270–279CrossRefGoogle Scholar
  10. Keymer JE, Marquet PA, Velasco-Hernndez JX, Levin SA (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156:478–494CrossRefGoogle Scholar
  11. McDiarmid C (1998) Concentration. In: Habib M, McDiarmid C, Ramirez-Alfonsin J, Reed B (eds) Probabilistic methods for algorithmic discrete mathematics, algorithms and combinatorics, vol 16. Springer, Berlin, pp 195–248CrossRefGoogle Scholar
  12. Ovaskainen O, Cornell SJ (2006) Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure. Theor Popul Biol 69:13–33CrossRefzbMATHGoogle Scholar
  13. Ovaskainen O, Hanski I (2001) Spatially structured metapopulation models: global and local assessment of metapopulation capacity. Theor Popul Biol 60:281–302CrossRefzbMATHGoogle Scholar
  14. Ovaskainen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61:285–295CrossRefzbMATHGoogle Scholar
  15. Ovaskainen O, Finkelshtein D, Kutoviy O, Cornell S, Bolker B, Kondratiev Yu (2014) A general mathematical framework for the analysis of spatiotemporal point processes. Theor Ecol 7:101–113CrossRefGoogle Scholar
  16. Seneta E (1981) Non-negative matrices and Markov chains. Springer, New YorkCrossRefzbMATHGoogle Scholar
  17. Xu D, Feng Z, Allen LJS, Shiwart RK (2006) A spatially structured metapopulation model with patch dynamics. J Theor Biol 239:469–481MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universität ZürichZürichSwitzerland
  2. 2.University of QueenslandBrisbaneAustralia

Personalised recommendations