Advertisement

Journal of Mathematical Biology

, Volume 77, Issue 4, pp 857–933 | Cite as

Mathematical modeling of climate change and malaria transmission dynamics: a historical review

  • Steffen E. EikenberryEmail author
  • Abba B. Gumel
Article

Abstract

Malaria, one of the greatest historical killers of mankind, continues to claim around half a million lives annually, with almost all deaths occurring in children under the age of five living in tropical Africa. The range of this disease is limited by climate to the warmer regions of the globe, and so anthropogenic global warming (and climate change more broadly) now threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles, while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria transmission dynamics, but have reached somewhat disparate conclusions as to optimum temperatures for transmission, and the possible effect of increasing temperatures upon (potential) malaria distribution, with some projecting a large increase in the area at risk for malaria, but others predicting primarily a shift in the disease’s geographic range. More generally, both global and local environmental changes drove the initial emergence of P. falciparum as a major human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep history through the present. It is the goal of this paper to review major aspects of malaria biology, methods for formalizing these into mathematical forms, uncertainties and controversies in proper modeling methodology, and to provide a timeline of some major modeling efforts from the classical works of Sir Ronald Ross and George Macdonald through recent climate-focused modeling studies. Finally, we attempt to place such mathematical work within a broader historical context for the “million-murdering Death” of malaria.

Keywords

Malaria Climate change Ross–Macdonald Thermal-response 

Mathematics Subject Classification

01-02 92-02 92B05 

Notes

Acknowledgements

This work is supported, in part, by the Global Security Initiative of Arizona State University. One of the authors (ABG) is grateful to National Institute for Mathematical and Biological Synthesis (NIMBioS) for funding the Working Group on Climate Change and Vector-borne Diseases (VBDs). NIMBioS is an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Award #EF-0832858, with additional support from The University of Tennessee, Knoxville. The authors are grateful to the two anonymous reviewers for their very constructive comments, which have significantly enhanced the clarity of the paper. Author SEE is also grateful to Lindsey Van Sambeek for her assistance with Fig. 3.

References

  1. Abdelrazec A, Gumel AB (2017) Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics. J Math Biol 74(6):1351–1395MathSciNetzbMATHGoogle Scholar
  2. Afrane YA, Lawson BW, Githeko AK, Yan G (2005) Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands. J Med Entomol 42(6):974–980Google Scholar
  3. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G (2007) Life-table analysis of Anopheles arabiensis in western Kenya highlands: effects of land covers on larval and adult survivorship. Am J Trop Med Hyg 77(4):660–666Google Scholar
  4. Afrane YA, Little TJ, Lawson BW, Githeko AK, Yan G (2008) Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Emerg Infect Dis 14(10):1533–1538Google Scholar
  5. Agusto FB (2014) Malaria drug resistance: the impact of human movement and spatial heterogeneity. Bull Math Biol 76(7):1607–1641MathSciNetzbMATHGoogle Scholar
  6. Agusto FB, Gumel AB, Parham PE (2015) Qualitative assessment of the role of temperature variations on malaria transmission dynamics. J Biol Syst 23(4):597–630MathSciNetzbMATHGoogle Scholar
  7. Allen RG, Pereira LS, Raes D, Smith M (1998) Food and Agriculture Organization of the United Nations. FAO Irrigation and drainage paper No. 56: Crop evapotranspiration (Guidelines for computing crop water requirements). Rome, ItalyGoogle Scholar
  8. Alonso D, Bouma MJ, Pascual M (2011) Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc R Soc B 278(1712):1661–1669Google Scholar
  9. Antinori S, Galimberti L, Milazzo L, Corbellino M (2012) Biology of human malaria plasmodia including Plasmodium knowlesi. Mediterr J Hematol Infect Dis 4(1):2012013Google Scholar
  10. Aron JL (1983) Dynamics of acquired immunity boosted by exposure to infection. Math Biosci 64(2):249–259zbMATHGoogle Scholar
  11. Aron JL (1988) Mathematical modelling of immunity to malaria. Math Biosci 90(1):385–396MathSciNetzbMATHGoogle Scholar
  12. Asare EO, Tompkins AM, Amekudzi LK, Ermert V (2016) A breeding site model for regional, dynamical malaria simulations evaluated using in situ temporary ponds observations. Geospat Health 11(1s):390Google Scholar
  13. Asare EO, Tompkins AM, Amekudzi LK, Ermert V, Redl R (2016) Mosquito breeding site water temperature observations and simulations towards improved vector-borne disease models for Africa. Geospat Health 11(s1):391Google Scholar
  14. Asare EO, Tompkins AM, Bomblies A (2016) A regional model for malaria vector developmental habitats evaluated using explicit, pond-resolving surface hydrology simulations. PLoS ONE 11(3):e0150626Google Scholar
  15. Auger P, Kouokam E, Sallet G, Tchuente M, Tsanou B (2008) The RossMacdonald model in a patchy environment. Math Biosci 216(2):123–131MathSciNetzbMATHGoogle Scholar
  16. Bacaër N (2007) Approximation of the basic reproduction number \(R_0\) for vector-borne diseases with a periodic vector population. Bull Math Biol 69(3):1067–1091MathSciNetzbMATHGoogle Scholar
  17. Baeza A, Bouma MJ, Dobson AP, Dhiman R, Srivastava HC, Pascual M (2011) Climate forcing and desert malaria: the effect of irrigation. Malar J 10(1):190Google Scholar
  18. Baton LA, Ranford-Cartwright LC (2005) Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol 21(12):573–580Google Scholar
  19. Bayoh MN (2001) Studies on the development and survival of anopheles gambiae sensu stricto at various temperatures and relative humidities. (Doctoral dissertation). Durham theses, Durham University. http://etheses.dur.ac.uk/4952/
  20. Bayoh MN, Lindsay SW (2003) Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res 93(05):375–381Google Scholar
  21. Bayoh MN, Lindsay SW (2004) Temperaturerelated duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol 18(2):174–179Google Scholar
  22. Bayu MS, Ullah MS, Takano Y, Gotoh T (2017) Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 72(3):205–227Google Scholar
  23. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON (2013) The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE 8(11):e79276Google Scholar
  24. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON (2017) The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. R Soc Open Sci 4(3):160969Google Scholar
  25. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572):207–211Google Scholar
  26. Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, Thomas MB (2013) Implications of temperature variation for malaria parasite development across Africa. Sci Rep 3:1300Google Scholar
  27. Bockarie MJ, Gbakima AA, Barnish G (1999) It all began with Ronald Ross: 100 years of malaria research and control in Sierra Leone (1899–1999). Ann Trop Med Parasitol 93(3):213–224Google Scholar
  28. Bomblies A (2012) Modeling the role of rainfall patterns in seasonal malaria transmission. Clim Change 112(3–4):673–685Google Scholar
  29. Bomblies A, Duchemin JB, Eltahir EA (2008) Hydrology of malaria: model development and application to a Sahelian village. Water Resour Res 44:W12445Google Scholar
  30. Bomblies A, Duchemin JB, Eltahir EA (2009) A mechanistic approach for accurate simulation of village scale malaria transmission. Malar J 8(1):223Google Scholar
  31. Briere JF, Pracros P, Le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28(1):22–29Google Scholar
  32. Brooks RT, Hayashi M (2002) Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England. Wetlands 22(2):247–255Google Scholar
  33. Cailly P, Tran A, Balenghien T, LAmbert G, Toty C, Ezanno P (2012) A climate-driven abundance model to assess mosquito control strategies. Ecol Modell 227:7–17Google Scholar
  34. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Coln-Gonzlez FJ et al (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA 111(9):3286–3291Google Scholar
  35. Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15(4):564–594Google Scholar
  36. Castillo-Chavez C, Bichara D, Morin BR (2016) Perspectives on the role of mobility, behavior, and time scales in the spread of diseases. Proc Natl Acad Sci USA 113(51):14582–14588Google Scholar
  37. Cator LJ, Lynch PA, Read AF, Thomas MB (2012) Do malaria parasites manipulate mosquitoes? Trends Parasitol 28(11):466–470Google Scholar
  38. Cator LJ, George J, Blanford S, Murdock CC, Baker TC, Read AF, Thomas MB (2013) ‘Manipulation’ without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. Proc R Soc B 280:20130711Google Scholar
  39. Cator LJ, Lynch PA, Thomas MB, Read AF (2014) Alterations in mosquito behaviour by malaria parasites: potential impact on force of infection. Malar J 13(1):164Google Scholar
  40. Chaves LF, Koenraadt CJ (2010) Climate change and highland malaria: fresh air for a hot debate. Q Rev Biol 85(1):27–55Google Scholar
  41. Childs LM, Buckee CO (2015) Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics. J R Soc Interface 12(104):20141379Google Scholar
  42. Childs LM, Prosper OF (2017) Simulating within-vector generation of the malaria parasite diversity. PLoS ONE 12(5):e0177941Google Scholar
  43. Christiansen-Jucht C, Parham PE, Saddler A, Koella JC, Basez MG (2014) Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae ss. Parasites Vectors 7:489Google Scholar
  44. Christiansen-Jucht C, Erguler K, Shek CY, Basez MG, Parham PE (2015) Modelling Anopheles gambiae ss population dynamics with temperature-and age-dependent survival. Int J Environ Res Public Health 12(6):5975–6005Google Scholar
  45. Clements AN, Paterson GD (1981) The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18(2):373–399Google Scholar
  46. Cohuet A, Harris C, Robert V, Fontenille D (2010) Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol 26(3):130–136Google Scholar
  47. Cosner C, Beier JC, Cantrell RS, Impoinvil D, Kapitanski L, Potts MD et al (2009) The effects of human movement on the persistence of vector-borne diseases. J Theor Biol 258(4):550–560MathSciNetGoogle Scholar
  48. Cox FE (2010) History of the discovery of the malaria parasites and their vectors. Parasites Vectors 3:5Google Scholar
  49. Craig MH, Snow RW, Le Sueur D (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15(3):105–111Google Scholar
  50. Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS et al (2014) Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol 32:157–187Google Scholar
  51. Culleton R, Carter R (2012) African Plasmodium vivax: distribution and origins. Int J Parasitol 42(12):1091–1097Google Scholar
  52. Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basez MG (2009) Anopheles mortality is both age-and Plasmodium-density dependent: implications for malaria transmission. Malar J 8:228Google Scholar
  53. Delatte H, Gimonneau G, Triboire A, Fontenille D (2009) Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol 46(1):33–41Google Scholar
  54. Demasse RD, Ducrot A (2013) An age-structured within-host model for multistrain malaria infections. SIAM J Appl Math 73(1):572–593MathSciNetzbMATHGoogle Scholar
  55. Dembele B, Friedman A, Yakubu AA (2009) Malaria model with periodic mosquito birth and death rates. J Biol Dyn 3(4):430–445MathSciNetzbMATHGoogle Scholar
  56. Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J et al (2004) A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J 3:29Google Scholar
  57. Desconnets JC, Taupin JD, Lebel T, Leduc C (1997) Hydrology of the HAPEX-Sahel Central Super-Site: surface water drainage and aquifer recharge through the pool systems. J Hydrol 188:155–178Google Scholar
  58. Detinova TS (1962) Age grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Age grouping methods in diptera of medical importance with special reference to some vectors of malariaGoogle Scholar
  59. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. Wiley, ChichesterzbMATHGoogle Scholar
  60. Diekmann O, Heesterbeek JAP, Metz JA (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382MathSciNetzbMATHGoogle Scholar
  61. Dietz K, Molineaux L, Thomas A (1974) A malaria model tested in the African savannah. Bull WHO 50:347–357Google Scholar
  62. Djadid ND, Gholizadeh S, Tafsiri E, Romi R, Gordeev M, Zakeri S (2007) Molecular identification of Palearctic members of Anopheles maculipennis in northern Iran. Malar J 6:6Google Scholar
  63. Eckhoff PA (2011) A malaria transmission-directed model of mosquito life cycle and ecology. Malar J 10:303Google Scholar
  64. Eckhoff P (2012) P. falciparum infection durations and infectiousness are shaped by antigenic variation and innate and adaptive host immunity in a mathematical model. PLoS ONE 7(9):e44950Google Scholar
  65. Eling W, Hooghof J, van de Vegte-Bolmer M, Sauerwein R, Van Gemert GJ (2001) Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito. Proc Sect Exp Appl Entomol Neth Entomol Soc 12:151–156Google Scholar
  66. Engelbrecht CJ, Engelbrecht FA, Dyson LL (2013) Highresolution modelprojected changes in midtropospheric closedlows and extreme rainfall events over southern Africa. Int J Climatol 33(1):173–187Google Scholar
  67. Ermert V, Fink AH, Jones AE, Morse AP (2011) Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J 10:35Google Scholar
  68. Ermert V, Fink AH, Jones AE, Morse AP (2011) Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa. Malar J 10:62Google Scholar
  69. Ferguson HM, Read AF (2002) Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 18(6):256–261Google Scholar
  70. Filipe JA, Riley EM, Drakeley CJ, Sutherland CJ, Ghani AC (2007) Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol 3(12):e255MathSciNetGoogle Scholar
  71. Finch JW, Hall RL (2001) Environmental Agency R&D Technical Report W6-043/TR: estimation of open water evaporation: a review of methodsGoogle Scholar
  72. Flerchinger GN, Xaio W, Marks D, Sauer TJ, Yu Q (2009) Comparison of algorithms for incoming atmospheric longwave radiation. Water Resour Res 45:W03423Google Scholar
  73. Forouzannia F, Gumel A (2015) Dynamics of an age-structured two-strain model for malaria transmission. Appl Math Comput 250:860–886MathSciNetzbMATHGoogle Scholar
  74. Garrett-Jones C (1964) Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 204:1173–1175Google Scholar
  75. Garrett-Jones C, Shidrawi GR (1969) Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology. Bull WHO 40(4):531–545Google Scholar
  76. Garske T, Ferguson NM, Ghani AC (2013) Estimating air temperature and its influence on malaria transmission across Africa. PLoS ONE 8(2):e56487Google Scholar
  77. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI (2010) Climate change and the global malaria recession. Nature 465(7296):342–345Google Scholar
  78. Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, Hay SI (2011) Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites Vectors 4(1):92Google Scholar
  79. Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E et al (2016) Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med 375(25):2435–2445Google Scholar
  80. Ghani AC, Sutherland CJ, Riley EM, Drakeley CJ, Griffin JT, Gosling RD, Filipe JA (2009) Loss of population levels of immunity to malaria as a result of exposure-reducing interventions: consequences for interpretation of disease trends. PLoS ONE 4(2):e4383Google Scholar
  81. Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED (2002) Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39(1):162–172Google Scholar
  82. Githeko AK, Ndegwa W (2001) Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Glob Change Hum Health 2(1):54–63Google Scholar
  83. Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W et al (2010) Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med 7(8):e1000324Google Scholar
  84. Griffin JT, Hollingsworth TD, Reyburn H, Drakeley CJ, Riley EM, Ghani AC (2015) Gradual acquisition of immunity to severe malaria with increasing exposure. Proc R Soc B 282:20142657Google Scholar
  85. Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E et al (2016) Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis 16(4):465–472Google Scholar
  86. Gu W, Regens JL, Beier JC, Novak RJ (2006) Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proc Natl Acad Sci USA 103(46):17560–17563Google Scholar
  87. Guilbride DL, Guilbride PD, Gawlinski P (2012) Malaria’s deadly secret: a skin stage. Trends Parasitol 28(4):142–150Google Scholar
  88. Gupta S, Day KP (1994) A theoretical framework for the immunoepidemiology of Plasmodium falciparum malaria. Parasite Immunol 16(7):361–370Google Scholar
  89. Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C (1999) Acquired immunity and postnatal clinical protection in childhood cerebral malaria. Proc R Soc B 266(1414):33–38Google Scholar
  90. Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C (1999) Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med 5(3):340–343Google Scholar
  91. Gurarie D, Karl S, Zimmerman PA, King CH, Pierre TG, Davis TM (2012) Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS ONE 7(3):e34040Google Scholar
  92. Hamblin MT, Di Rienzo A (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66(5):1669–1679Google Scholar
  93. Hastings IM (1997) A model for the origins and spread of drug-resistant malaria. Parasitology 115(2):133–141Google Scholar
  94. Hastings IM (2003) Malaria control and the evolution of drug resistance: an intriguing link. Trends Parasitol 19(2):70–73Google Scholar
  95. Hastings IM, Watkins WM (2005) Intensity of malaria transmission and the evolution of drug resistance. Acta Trop 94(3):218–229Google Scholar
  96. Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW (2002) Climate change and the resurgence of malaria in the East African highlands. Nature 415:905–909Google Scholar
  97. Hay SI, Smith DL, Snow RW (2008) Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 8(6):369–378Google Scholar
  98. Hayashi M, Van der Kamp G (2000) Simple equations to represent the volumeareadepth relations of shallow wetlands in small topographic depressions. J Hydrol 237(1):74–85Google Scholar
  99. Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J et al (2016) Averting a malaria disaster: Will insecticide resistance derail malaria control? Lancet 387(10029):1785–1788Google Scholar
  100. Hoshen MB, Morse AP (2004) A weather-driven model of malaria transmission. Malar J 3:32Google Scholar
  101. Huijben S, Paaijmans KP (2017) Putting evolution in elimination: winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 11(4):415–430Google Scholar
  102. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex Y, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  103. IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–32Google Scholar
  104. Jannat KNE, Roitberg BD (2013) Effects of larval density and feeding rates on larval life history traits in Anopheles gambiae ss (Diptera: Culicidae). J Vector Ecol 38(1):120–126Google Scholar
  105. Jepson WF, Moutia A, Courtois C (1947) The malaria problem in Mauritius: the bionomics of Mauritian anophelines. Bull Entomol Res 38(01):177–208Google Scholar
  106. Kiernan B (2007) Blood and soil: a world history of genocide and extermination from sparta to darfur. Yale University Press, HarrisburgGoogle Scholar
  107. Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, Bruce J, Mosha FW, Rowland MW (2012) Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS ONE 7(3):e31481Google Scholar
  108. Klowden MJ, Briegel H (1994) Mosquito gonotrophic cycle and multiple feeding potential: contrasts between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol 31(4):618–622Google Scholar
  109. Kweka EJ, Zhou G, Munga S, Lee MC, Atieli HE, Nyindo M et al (2012) Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS ONE 7(12):e52084Google Scholar
  110. Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24(1):68–75Google Scholar
  111. Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90(4):888–900Google Scholar
  112. Lardeux FJ, Tejerina RH, Quispe V, Chavez TK (2008) A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J 7:141Google Scholar
  113. Li Y, Ruan S, Xiao D (2011) The within-host dynamics of malaria infection with immune response. Math Biosci Eng 8(4):999–1018MathSciNetzbMATHGoogle Scholar
  114. Lindsay SW, Birley MH (1996) Climate change and malaria transmission. Ann Trop Med Parasitol 90(6):573–588Google Scholar
  115. Lindsay SW, Martens WJ (1998) Malaria in the African highlands: past, present and future. Bull WHO 76(1):33–45Google Scholar
  116. Liu W, Li Y, Shaw KS, Learn GH, Plenderleith LJ, Malenke JA et al (2014) African origin of the malaria parasite Plasmodium vivax. Nat Commun 5:3346Google Scholar
  117. Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5(6):1133–1140Google Scholar
  118. Lou Y, Zhao XQ (2010) A climate-based malaria transmission model with structured vector population. SIAM J Appl Math 70(6):2023–2044MathSciNetzbMATHGoogle Scholar
  119. Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH (2017) Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. In J Parasitol 47(2–3):87–97Google Scholar
  120. Lunde TM, Bayoh MN, Lindtjørn B (2013) How malaria models relate temperature to malaria transmission. Parasites Vectors 6:20Google Scholar
  121. Lunde TM, Korecha D, Loha E, Sorteberg A, Lindtjørn B (2013) A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malar J 12:28Google Scholar
  122. Lyimo EO, Takken W, Koella JC (1992) Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomol Exp Appl 63(3):265–271Google Scholar
  123. Lyons CL, Coetzee M, Terblanche JS, Chown SL (2012) Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malar J 11(1):226Google Scholar
  124. Lyons CL, Coetzee M, Chown SL (2013) Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasit Vectors 6(1):104Google Scholar
  125. Ma G, Hoffmann AA, Ma CS (2015) Daily temperature extremes play an important role in predicting thermal effects. J Exp Biol 218(14):2289–2296Google Scholar
  126. Macdonald G (1952) The analysis of equilibrium in malaria. Trop Dis Bull 49(9):813–829Google Scholar
  127. Macdonald G (1956) Epidemiological basis of malaria control. Bull WHO 15:613–626Google Scholar
  128. Macdonald G (1956) Theory of the eradication of malaria. Bull WHO 15:369–387Google Scholar
  129. Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, OxfordGoogle Scholar
  130. MacDonald G, Cuellar CB, Foll CV (1968) The dynamics of malaria. Bull WHO 38(5):743–755Google Scholar
  131. Mala AO, Irungu LW, Mitaki EK, Shililu JI, Mbogo CM, Njagi JK, Githure JI (2014) Gonotrophic cycle duration, fecundity and parity of Anopheles gambiae complex mosquitoes during an extended period of dry weather in a semi arid area in Baringo County, Kenya. Int J Mosq Res 1(2):28–34Google Scholar
  132. Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria—a review. Malar J 10:202Google Scholar
  133. Martens WJM, Jetten TH, Rotmans J, Niessen LW (1995) Climate change and vector-borne diseases: a global modelling perspective. Glob Environ Change 5(3):195–209Google Scholar
  134. Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ (1995) Potential impact of global climate change on malaria risk. Environ Health Perspect 103(5):458–464Google Scholar
  135. Martens WJ, Jetten TH, Focks DA (1997) Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim Change 35(2):145–156Google Scholar
  136. Martens P, Kovats RS, Nijhof S, De Vries P, Livermore MTJ, Bradley DJ et al (1999) Climate change and future populations at risk of malaria. Glob Environ Change 9(S1):S89–S107Google Scholar
  137. McKinley DC, Ryan MG, Birdsey RA, Giardina CP, Harmon ME, Heath LS et al (2011) A synthesis of current knowledge on forests and carbon storage in the United States. Ecol Appl 21(6):1902–1924Google Scholar
  138. Midega JT, Mbogo CM, Mwambi H, Wilson MD, Ojwang G, Mwangangi JM et al (2007) Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using markreleaserecapture methods. J Med Entomol 44(6):923–929Google Scholar
  139. Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G (1999) Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am J Trop Med Hyg 61(6):1010–1016Google Scholar
  140. Minakawa N, Sonye G, Mogi M, Yan G (2004) Habitat characteristics of Anopheles gambiae ss larvae in a Kenyan highland. Med Vet Entomol 18(3):301–305Google Scholar
  141. Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, Yan G (2005) Spatial distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types and topography. Am J Trop Med Hyg 73(1):157–165Google Scholar
  142. Molineaux L, Dietz K, Thomas A (1978) Further epidemiological evaluation of a malaria model. Bull WHO 56(4):565–571Google Scholar
  143. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, BenHorin T, Moor E et al (2013) Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett 16(1):22–30Google Scholar
  144. Murdock CC, Sternberg ED, Thomas MB (2016) Malaria transmission potential could be reduced with current and future climate change. Sci Rep 6:27771Google Scholar
  145. Muriu SM, Coulson T, Mbogo CM, Godfray HCJ (2013) Larval density dependence in Anopheles gambiae ss, the major African vector of malaria. J Anim Ecol 82(1):166–174Google Scholar
  146. Nájera JA, González-Silva M, Alonso PL (2011) Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS Med 8(1):e1000412Google Scholar
  147. Nguyen PL, Vantaux A, Hien DF, Dabiré KR, Yameogo BK, Gouagna LC, Fontenille D, Renaud F, Simard F, Costantini C, Thomas F (2017) No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Sci Rep 7(1):9415Google Scholar
  148. Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1199–1265Google Scholar
  149. Niger AM, Gumel AB (2008) Mathematical analysis of the role of repeated exposure on malaria transmission dynamics. Differ Equ Dyn Syst 16(3):251–287MathSciNetzbMATHGoogle Scholar
  150. Nikolaev BP (1935) The influence of temperature on the development of the malaria parasite in the mosquito. Tr Paster Inst Epidem Bakt (Leningr) 2:108Google Scholar
  151. Nikolov M, Bever CA, Upfill-Brown A, Hamainza B, Miller JM, Eckhoff PA, Wenger EA, Gerardin J (2016) Malaria elimination campaigns in the Lake Kariba region of Zambia: a spatial dynamical model. PLoS Comput Biol 12(11):e1005192Google Scholar
  152. Noden BH, Kent MD, Beier JC (1995) The impact of variations in temperature on early Plasmodium falciparum development in Anopheles stephensi. Parasitology 111(05):539–545Google Scholar
  153. Novikov YM, Vaulin OV (2014) Expansion of Anopheles maculipennis ss (Diptera: Culicidae) to northeastern Europe and northwestern Asia: causes and consequences. Parasites Vectors 7:389Google Scholar
  154. Odiere M, Bayoh MN, Gimnig J, Vulule J, Irungu L, Walker E (2007) Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in western Kenya with clay pots. J Med Entomol 44(1):14–22Google Scholar
  155. Okech BA, Gouagna LC, Killeen GF, Knols BG, Kabiru EW, Beier JC et al (2003) Influence of sugar availability and indoor microclimate on survival of Anopheles gambiae (Diptera: Culicidae) under semifield conditions in western Kenya. J Med Entomol 40(5):657–663Google Scholar
  156. Okech BA, Gouagna LC, Walczak E, Kabiru EW, Beier JC, Yan G, Githure JI (2004) The development of Plasmodium falciparum in experimentally infected Anopheles gambiae (Diptera: Culicidae) under ambient microhabitat temperature in western Kenya. Acta Trop 92(2):99–108Google Scholar
  157. Okech BA, Gouagna LC, Kabiru EW, Walczak E, Beier JC, Yan G, Githure JI (2004) Resistance of early midgut stages of natural Plasmodium falciparum parasites to high temperatures in experimentally infected Anopheles gambiae (Diptera: Culicidae). J Parasitol 90(4):764–768Google Scholar
  158. Okuneye K, Gumel AB (2017) Analysis of a temperature-and rainfall-dependent model for malaria transmission dynamics. Math Biosci 287:72–92MathSciNetzbMATHGoogle Scholar
  159. Olayemi IK, Ande AT (2008) Survivorship of Anopheles gambiae in relation to malaria transmission in Ilorin, Nigeria. Online J Health Allied Sci 7(3):1Google Scholar
  160. Paaijmans KP, Wandago MO, Githeko AK, Takken W (2007) Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2(11):e1146Google Scholar
  161. Paaijmans KP, Heusinkveld BG, Jacobs AF (2008) A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool. Int J Biometeorol 52(8):797–803Google Scholar
  162. Paaijmans KP, Jacobs AFG, Takken W, Heusinkveld BG, Githeko AK, Dicke M, Holtslag AAM (2008) Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya. Hydrol Processes 22(24):4789–4801Google Scholar
  163. Paaijmans KP, Read AF, Thomas MB (2009) Understanding the link between malaria risk and climate. Proc Natl Acad Sci USA 106(33):13844–13849Google Scholar
  164. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA 107(34):15135–15139Google Scholar
  165. Paaijmans KP, Blanford S, Chan BH, Thomas MB (2012) Warmer temperatures reduce the vectorial capacity of malaria mosquitoes. Biol Lett 8(3):465–468Google Scholar
  166. Paaijmans KP, Cator LJ, Thomas MB (2013) Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLoS ONE 8(1):e55777Google Scholar
  167. Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB (2013) Temperature variation makes ectotherms more sensitive to climate change. Glob Change Biol 19(8):2373–2380Google Scholar
  168. Packard RM (2007) The making of a tropical disease: a short history of malaria. Johns Hopkins University Press, BaltimoreGoogle Scholar
  169. Parham PE, Michael E (2010) Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect 118(5):620–626Google Scholar
  170. Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E (2012) Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malar J 11:271Google Scholar
  171. Pascual M, Bouma MJ (2009) Do rising temperatures matter. Ecology 90(4):906–912Google Scholar
  172. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M (2006) Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci USA 103(15):5829–5834Google Scholar
  173. Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K (2008) Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc R Soc B 275(1631):123–132Google Scholar
  174. Patz JA, Epstein PR, Burke TA, Balbus JM (1996) Global climate change and emerging infectious diseases. JAMA 275(3):217–223Google Scholar
  175. Pollitt L, Churcher TS, Dawes EJ, Khan SM, Sajid M, Basáñez MG, Colegrave N, Reece SE (2013) Costs of crowding for the transmission of malaria parasites. Evol Appl 6(4):617–629Google Scholar
  176. Pongtavornpinyo W, Hastings IM, Dondorp A, White LJ, Maude RJ, Saralamba S, Day NP, White NJ, Boni MF (2009) Probability of emergence of antimalarial resistance in different stages of the parasite life cycle. Evol Appl 2(1):52–61Google Scholar
  177. Porphyre T, Bicout DJ, Sabatier P (2005) Modelling the abundance of mosquito vectors versus flooding dynamics. Ecol Model 183(2):173–181Google Scholar
  178. Prosper O, Ruktanonchai N, Martcheva M (2012) Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control. J Theor Biol 303:1–14MathSciNetzbMATHGoogle Scholar
  179. Ra GL, Quiones ML, Vlez ID, Zuluaga JS, Rojas W, Poveda G, Ruiz D (2005) Laboratory estimation of the effects of increasing temperatures on the duration of gonotrophic cycle of Anopheles albimanus (Diptera: Culicidae). Mem Inst Oswaldo Cruz 100(5):515–520Google Scholar
  180. Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM et al (2013) A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface 10:20120921Google Scholar
  181. Rodriguez-Barraquer I, Arinaitwe E, Jagannathan P, Boyle MJ, Tappero J, Muhindo M et al (2016) Quantifying heterogeneous malaria exposure and clinical protection in a cohort of Ugandan children. J Infect Dis 214(7):1072–1080Google Scholar
  182. Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289(5485):1763–1766Google Scholar
  183. Rudel TK, Defries R, Asner GP, Laurance WF (2009) Changing drivers of deforestation and new opportunities for conservation. Conserv Biol 23(6):1396–1405Google Scholar
  184. Ruktanonchai NW, Smith DL, De Leenheer P (2016) Parasite sources and sinks in a patched Ross–Macdonald malaria model with human and mosquito movement: implications for control. Math Biosci 279:90–101MathSciNetzbMATHGoogle Scholar
  185. Ryan SJ, Ben-Horin T, Johnson LR (2015) Malaria control and senescence: the importance of accounting for the pace and shape of aging in wild mosquitoes. Ecosphere 6(9):170Google Scholar
  186. Ryan SJ, McNally A, Johnson LR, Mordecai EA, Ben-Horin T, Paaijmans K, Lafferty KD (2015) Mapping physiological suitability limits for malaria in Africa under climate change. Vector Borne Zoonotic Dis 15(12):718–725Google Scholar
  187. Saralamba S, Pan-Ngum W, Maude RJ, Lee SJ, Tarning J, Lindegårdh N et al (2011) Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 108(1):397–402Google Scholar
  188. Schneider P, Takken W, McCall PJ (2000) Interspecific competition between sibling species larvae of Anopheles arabiensis and A. gambiae. Med Vet Entomol 14(2):165–170Google Scholar
  189. Scott TW, Takken W (2012) Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol 28(3):114–121Google Scholar
  190. Sene KJ, Gash JH, McNeil DD (1991) Evaporation from a tropical lake: comparison of theory with direct measurements. J Hydrol 127(1–4):193–217Google Scholar
  191. Service MW (1971) Studies on sampling larval populations of the Anopheles gambiae complex. Bull WHO 45(2):169–180Google Scholar
  192. Silva JC, Egan A, Arze C, Spouge JL, Harris DG (2015) A new method for estimating species age supports the co-existence of malaria parasites and their mammalian hosts. Mol Biol Evol 32(5):1354–1364Google Scholar
  193. Singh P, Yadav Y, Saraswat S, Dhiman RC (2016) Intricacies of using temperature of different niches for assessing impact on malaria transmission. Indian J Med Res 144(1):67–75Google Scholar
  194. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J et al (2010) The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic prcis. Parasites Vectors 3:117Google Scholar
  195. Small J, Goetz SJ, Hay SI (2003) Climatic suitability for malaria transmission in Africa, 1911–1995. Proc Natl Acad Sci USA 100(26):15341–15345Google Scholar
  196. Smith DL, Hay SI, Noor AM, Snow RW (2009) Predicting changing malaria risk after expanded insecticide-treated net coverage in Africa. Trends Parasitol 25(11):511–516Google Scholar
  197. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE (2012) Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog 8(4):e1002588Google Scholar
  198. Snow RW (2015) Global malaria eradication and the importance of Plasmodium falciparum epidemiology in Africa. BMC Med 13:23Google Scholar
  199. Snow RW, Craig MH, Deichmann U, Le Sueur D (1999) A preliminary continental risk map for malaria mortality among African children. Parasitol Today 15(3):99–104Google Scholar
  200. Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C et al (2015) Changing malaria prevalence on the Kenyan coast since 1974: climate, drugs and vector control. PLoS ONE 10(6):e0128792Google Scholar
  201. Sternberg ED, Thomas MB (2014) Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol 30(3):115–122Google Scholar
  202. Sumba LA, Ogbunugafor CB, Deng AL, Hassanali A (2008) Regulation of oviposition in Anopheles gambiae ss: role of inter-and intra-specific signals. J Chem Ecol 34(11):1430–1436Google Scholar
  203. Suzuki R, Xu J, Motoya K (2006) Global analyses of satellitederived vegetation index related to climatological wetness and warmth. Int J Climatol 26(4):425–438Google Scholar
  204. Tabo Z, Luboobi LS, Ssebuliba J (2017) Mathematical modelling of the in-host dynamics of malaria and the effects of treatment. J Math Comput Sci 17(1):1–21Google Scholar
  205. Takken W, Klowden MJ, Chambers GM (1998) Articles: effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. J Med Entomol 35(5):639–645Google Scholar
  206. Takken W, van Loon JJ, Adam W (2001) Inhibition of host-seeking response and olfactory responsiveness in Anopheles gambiae following blood feeding. J Insect Physiol 47(3):303–310Google Scholar
  207. Tanser FC, Sharp B, le Sueur D (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362(9398):1792–1798Google Scholar
  208. Teboh-Ewungkem MI, Podder CN, Gumel AB (2010) Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics. Bull Math Biol 72(1):63–93MathSciNetzbMATHGoogle Scholar
  209. Tilley L, Dixon MW, Kirk K (2011) The Plasmodium falciparum-infected red blood cell. Int J Biochem Cell Biol 43(6):839–842Google Scholar
  210. Tompkins AM, Ermert V (2013) A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar J 12(1):65Google Scholar
  211. Torres-Sorando L, Rodríguez DJ (1997) Models of spatio-temporal dynamics in malaria. Ecol Modell 104(2):231–240Google Scholar
  212. Trape JF, Rogier C, Konate L, Diagne N, Bouganali H, Canque B et al (1994) The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg 51(2):123–137Google Scholar
  213. United Nations, Department of Economic and Social Affairs, Population Division (2017) World population prospects: the 2017 revision, key findings and advance tables. Working paper no. ESA/P/WP/248Google Scholar
  214. Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48MathSciNetzbMATHGoogle Scholar
  215. Vantaux A, de Sales Hien DF, Yameogo B, Dabiré KR, Thomas F, Cohuet A, Lefèvre T (2015) Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front Ecol Evol 3:86Google Scholar
  216. Vogels M, Zoeckler R, Stasiw DM, Cerny LC (1975) PF Verhulsts notice sur la loi que la populations suit dans son accroissement from correspondence mathematique et physique. Ghent, vol. X, 1838. J Biol Phys 3(4):183–192Google Scholar
  217. Vogels M, Zoeckler R, Stasiw DM, Cerny LC (1975) PF Verhulsts notice sur la loi que la populations suit dans son accroissement from correspondence mathematique et physique. Ghent, vol. X, 1838. J Biol Phys 3(4):183–192Google Scholar
  218. Wearing HJ, Rohani P, Keeling MJ (2005) Appropriate models for the management of infectious diseases. PLoS Med 2(7):e174Google Scholar
  219. Webb JLA Jr (2014) The long struggle against malaria in tropical Africa. Cambridge University Press, New YorkGoogle Scholar
  220. White MT, Griffin JT, Churcher TS, Ferguson NM, Basez MG, Ghani AC (2011) Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors 4:153Google Scholar
  221. White MT, Griffin JT, Churcher TS, Ferguson NM, Basez MG, Ghani AC (2011) Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors 4:153Google Scholar
  222. Yamana TK, Bomblies A, Laminou IM, Duchemin JB, Eltahir EA (2013) Linking environmental variability to village-scale malaria transmission using a simple immunity model. Parasit Vectors 6(1):226Google Scholar
  223. Yamana TK, Bomblies A, Eltahir EA (2016) Climate change unlikely to increase malaria burden in West Africa. Nat Clim Change 6(11):1009Google Scholar
  224. Yamana TK, Qiu X, Eltahir EA (2017) Hysteresis in simulations of malaria transmission. Adv Water Resour 108:416–422Google Scholar
  225. Yaro AS, Dao A, Adamou A, Crawford JE, Ribeiro JM, Gwadz R et al (2006) The distribution of hatching time in Anopheles gambiae. Malar J 5:19Google Scholar
  226. Yé Y, Hoshen M, Kyobutungi C, Louis VR, Sauerborn R (2009) Local scale prediction of Plasmodium falciparum malaria transmission in an endemic region using temperature and rainfall. Global Health Action 2(s1):1923Google Scholar
  227. Yeung S, Pongtavornpinyo W, Hastings IM, Mills AJ, White NJ (2004) Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am J Trop Med Hyg 71(2S):179–186Google Scholar
  228. Zhou G, Minakawa N, Githeko AK, Yan G (2004) Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA 101(8):2375–2380Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Global Security InitiativeArizona State UniversityTempeUSA
  2. 2.School of Mathematical and Statistical SciencesArizona State UniversityTempeUSA
  3. 3.School of Mathematical and Statistical SciencesArizona State UniversityTempeUSA

Personalised recommendations