Advertisement

Journal of Mathematical Biology

, Volume 77, Issue 6–7, pp 1649–1687 | Cite as

Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics

  • Mark A. Lewis
  • Nathan G. Marculis
  • Zhongwei Shen
Article
  • 290 Downloads

Abstract

To understand the effects that the climate change has on the evolution of species as well as the genetic consequences, we analyze an integrodifference equation (IDE) models for a reproducing and dispersing population in a spatio-temporal heterogeneous environment described by a shifting climate envelope. Our analysis on the IDE focuses on the persistence criterion, travelling wave solutions, and the inside dynamics. First, the persistence criterion, characterizing the global dynamics of the IDE, is established in terms of the basic reproduction number. In the case of persistence, a unique travelling wave is found to govern the global dynamics. The effects of the size and the shifting speed of the climate envelope on the basic reproduction number, and hence, on the persistence criterion, are also investigated. In particular, the critical domain size and the critical shifting speed are found in certain cases. Numerical simulations are performed to complement the theoretical results. In the case of persistence, we separate the travelling wave and general solutions into spatially distinct neutral fractions to study the inside dynamics. It is shown that each neutral genetic fraction rearranges itself spatially so as to asymptotically achieve the profile of the travelling wave. To measure the genetic diversity of the population density we calculate the Shannon diversity index and related indices, and use these to illustrate how diversity changes with underlying parameters.

Keywords

Integrodifference equation Persistence criterion Travelling wave Inside dynamics Neutral genetic diversity Diversity index 

Mathematics Subject Classification

92D25 92D40 45G10 35C07 39A10 

References

  1. Bonnefon O, Coville J, Garnier J, Roques L (2014) Inside dynamics of solutions of integro-differential equations. Discrete Contin Dyn Syst Ser B 19(10):3057–3085MathSciNetCrossRefGoogle Scholar
  2. Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1(6):313–318CrossRefGoogle Scholar
  3. Berestycki H, Diekmann O, Nagelkerke CJ, Zegeling PA (2009) Can a species keep pace with a shifting climate? Bull Math Biol 71(2):399–429MathSciNetCrossRefGoogle Scholar
  4. Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Her Majesty’s Stationery Office, LondonGoogle Scholar
  5. Bouhours J, Lewis MA (2016) Climate change and integrodifference equations in a stochastic environment. Bull Math Biol 78(9):1866–1903MathSciNetCrossRefGoogle Scholar
  6. Donsker MD, Varadhan SRS (1975) On a variational formula for the principal eigenvalue for operators with maximum principle. Proc Natl Acad Sci USA 72:780–783MathSciNetCrossRefGoogle Scholar
  7. Garnier J, Giletti T, Hamel F, Roques L (2012) Inside dynamics of pulled and pushed fronts. J Math Pures Appl (9) 98(4):428–449MathSciNetCrossRefGoogle Scholar
  8. Garnier J, Lewis MA (2016) Expansion under climate change: the genetic consequences. Bull Math Biol 78(11):2165–2185MathSciNetCrossRefGoogle Scholar
  9. Hsu S-B, Zhao X-Q (2008) Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J Math Anal 40(2):776–789MathSciNetCrossRefGoogle Scholar
  10. Inaba H (2006) Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete Contin Dyn Syst Ser B 6:69–96MathSciNetCrossRefGoogle Scholar
  11. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2027–2042CrossRefGoogle Scholar
  12. Kreǐn MG, Rutman MA (1948) Linear operators leaving invariant a cone in a Banach space. Uspehi Matem Nauk (NS) 3(1(23)):3–95Google Scholar
  13. Lewis MA (1997) Variability, patchiness, and jump dispersal in the spread of an invading population. In: Tilman D, Kareiva P (eds) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, pp 46–69Google Scholar
  14. Leinster T, Cobbold CA (2012) Measuring diversity: the importance of species similarity. Ecology 93(3):4770489CrossRefGoogle Scholar
  15. Lui R (1982a) A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data. SIAM J Math Anal 13(6):913–937MathSciNetCrossRefGoogle Scholar
  16. Lui R (1982b) A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support. SIAM J Math Anal 13(6):938–953MathSciNetCrossRefGoogle Scholar
  17. Lui R (1982/83) Existence and stability of travelling wave solutions of a nonlinear integral operator. J Math Biol 16(3):199–220Google Scholar
  18. Lui R (1985) A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case. SIAM J Math Anal 16(6):1180–1206MathSciNetCrossRefGoogle Scholar
  19. Li B, Lewis MA, Weinberger HF (2009) Existence of traveling waves for integral recursions with nonmonotone growth functions. J Math Biol 58(3):323–338MathSciNetCrossRefGoogle Scholar
  20. Marculis NG, Lui R, Lewis MA (2017) Neutral genetic patterns for expanding populations with nonoverlapping generations. Bull Math Biol 79(4):828–852MathSciNetCrossRefGoogle Scholar
  21. Marek I (1970) Frobenius theory of positive operators: comparison theorems and applications. SIAM J Appl Math 19:607–628MathSciNetCrossRefGoogle Scholar
  22. Roques L, Garnier J, Hamel F, Klein EK (2012) Allee effect promotes diversity in traveling waves of colonization. Proc Natl Acad Sci USA 109(23):8828–8833MathSciNetCrossRefGoogle Scholar
  23. Parmesan C (1996) Climate and species’ range. Nature 382(6594):765CrossRefGoogle Scholar
  24. Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22(4):925–946CrossRefGoogle Scholar
  25. Potapov AB, Lewis MA (2004) Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull Math Biol 66(5):975–1008MathSciNetCrossRefGoogle Scholar
  26. Powell J (2001) Spatio-temporal models in ecology; an introduction to integrodifference equations. http://www.math.usu.edu/powell/wauclass/labs.pdf
  27. Sawashima I (1964) On spectral properties of some positive operators. Nat Sci Rep Ochanomizu Univ 15:53–64MathSciNetzbMATHGoogle Scholar
  28. Simpson EH (1949) Measurement of diversiy. Nature 163:688CrossRefGoogle Scholar
  29. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423MathSciNetCrossRefGoogle Scholar
  30. Takáč P (1994) A short elementary proof of the Kreǐn–Rutman theorem. Houston J Math 20(1):93–98MathSciNetzbMATHGoogle Scholar
  31. Weinberger HF (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13(3):353–396MathSciNetCrossRefGoogle Scholar
  32. Zhao X-Q (1996) Global attractivity and stability in some monotone discrete dynamical systems. Bull Austral Math Soc 53(2):305–324MathSciNetCrossRefGoogle Scholar
  33. Zhou Y, Kot M (2011) Discrete-time growth-dispersal models with shifting species ranges. Theor Ecol 4(1):13–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations