Advertisement

Journal of Mathematical Biology

, Volume 75, Issue 5, pp 1285–1317 | Cite as

The limits of weak selection and large population size in evolutionary game theory

  • Christine SampleEmail author
  • Benjamin Allen
Article

Abstract

Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the \(wN\) limit, in which weak selection is applied before the large population limit, and the \(Nw\) limit, in which the order is reversed. Formal mathematical definitions of the \(Nw\) and \(wN\) limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the \(Nw\) and \(wN\) limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

Keywords

Game theory Social behavior Moran process Selection strength 

Mathematics Subject Classification

91A22 92D15 60J20 

References

  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, New YorkzbMATHGoogle Scholar
  2. Allen B, Nowak MA (2014) Games on graphs. EMS Surv Math Sci 1(1):113–151MathSciNetCrossRefzbMATHGoogle Scholar
  3. Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68(8):1923–1944MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bladon AJ, Galla T, McKane AJ (2010) Evolutionary dynamics, intrinsic noise, and cycles of cooperation. Phys Rev E 81(6):066122CrossRefGoogle Scholar
  5. Blume LE (1993) The statistical mechanics of strategic interaction. Games and economic behavior 5(3):387–424MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bomze I, Pawlowitsch C (2008) One-third rules with equality: second-order evolutionary stability conditions in finite populations. J Theor Biol 254(3):616–620MathSciNetCrossRefGoogle Scholar
  7. Broom M, Rychtár J (2013) Game-theoretical models in biology. Chapman & Hall/CRC, Boca RatonzbMATHGoogle Scholar
  8. Chen YT (2013) Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann Appl Probab 23(2):637–664MathSciNetCrossRefzbMATHGoogle Scholar
  9. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, OxfordCrossRefzbMATHGoogle Scholar
  10. Haldane JBS (1927) A mathematical theory of natural and artificial selection, part V: selection and mutation. Math Proc Camb Philos Soc 23:838–844CrossRefzbMATHGoogle Scholar
  11. Harsanyi JC, Selten R et al (1988) A general theory of equilibrium selection in games, vol 1. MIT Press Books, CambridgezbMATHGoogle Scholar
  12. Helbing D (1996) A stochastic behavioral model and a ‘microscopic’ foundation of evolutionary game theory. Theor Decis 20(2):149–179MathSciNetCrossRefzbMATHGoogle Scholar
  13. Hofbauer J, Sigmund K (1998) Evolutionary games and replicator dynamics. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  14. Ibsen-Jensen R, Chatterjee K, Nowak MA (2015) Computational complexity of ecological and evolutionary spatial dynamics. Proc Nat Acad Sci 112(51):15,636–15,641Google Scholar
  15. Imhof LA, Nowak MA (2006) Evolutionary game dynamics in a Wright–Fisher process. J Math Biol 52(5):667–681MathSciNetCrossRefzbMATHGoogle Scholar
  16. Jeong HC, Oh SY, Allen B, Nowak MA (2014) Optional games on cycles and complete graphs. J Theor Biol 356:98–112MathSciNetCrossRefGoogle Scholar
  17. Kimura M (1964) Diffusion models in population genetics. J Appl Probab 1(2):177–232MathSciNetCrossRefzbMATHGoogle Scholar
  18. Ladret V, Lessard S (2008) Evolutionary game dynamics in a finite asymmetric two-deme population and emergence of cooperation. J Theor Biol 255(1):137–151MathSciNetCrossRefGoogle Scholar
  19. Lessard S, Ladret V (2007) The probability of fixation of a single mutant in an exchangeable selection model. J Math Biol 54(5):721–744MathSciNetCrossRefzbMATHGoogle Scholar
  20. Lessard S (2011) On the robustness of the extension of the one-third law of evolution to the multi-player game. Dyn Games Appl 1(3):408–418MathSciNetCrossRefzbMATHGoogle Scholar
  21. Moran PAP (1958) Random processes in genetics. Math Proc Camb Philos Soc 54(01):60–71MathSciNetCrossRefzbMATHGoogle Scholar
  22. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359(6398):826–829CrossRefGoogle Scholar
  23. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983):646–650CrossRefGoogle Scholar
  24. Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured populations. Philos Trans R Soc B Biol Sci 365(1537):19–30CrossRefGoogle Scholar
  25. Ohtsuki H, Nowak MA (2006) Evolutionary games on cycles. Proc R Soc B Biol Sci 273(1598):2249–2256. doi: 10.1098/rspb.2006.3576 CrossRefGoogle Scholar
  26. Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505CrossRefGoogle Scholar
  27. Ohtsuki H, Bordalo P, Nowak MA (2007) The one-third law of evolutionary dynamics. J Theor Biol 249(2):289–295MathSciNetCrossRefGoogle Scholar
  28. Saakian DB, Hu C-K (2016) Solution of classical evolutionary models in the limit when the diffusion approximation breaks down. Phys Rev E 94(4):042422CrossRefGoogle Scholar
  29. Smith JM (1982) Evolution and the theory of games. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  30. Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18CrossRefzbMATHGoogle Scholar
  31. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446(4–6):97–216MathSciNetCrossRefGoogle Scholar
  32. Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259(3):570–581. doi: 10.1016/j.jtbi.2009.03.035 MathSciNetCrossRefGoogle Scholar
  33. Taylor C, Fudenberg D, Sasaki A, Nowak M (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66:1621–1644MathSciNetCrossRefzbMATHGoogle Scholar
  34. Taylor PD, Day T, Wild G (2007) Evolution of cooperation in a finite homogeneous graph. Nature 447(7143):469–472CrossRefGoogle Scholar
  35. Thomson BS, Bruckner JB, Bruckner AM (2001) Elementary real analysis. Prentice Hall Inc, Upper Saddle RiverzbMATHGoogle Scholar
  36. Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Phys Rev Lett 95(23):238701CrossRefGoogle Scholar
  37. Traulsen A, Nowak MA, Pacheco JM (2006a) Stochastic dynamics of invasion and fixation. Phys Rev E 74(1):011909CrossRefGoogle Scholar
  38. Traulsen A, Pacheco JM, Imhof LA (2006b) Stochasticity and evolutionary stability. Phys Rev E 74(2):021905MathSciNetCrossRefGoogle Scholar
  39. Traulsen A, Pacheco JM, Nowak MA (2007) Pairwise comparison and selection temperature in evolutionary game dynamics. J Theor Biol 246(3):522–529MathSciNetCrossRefGoogle Scholar
  40. Weibull JW (1997) Evolutionary game theory. MIT press, CambridgezbMATHGoogle Scholar
  41. Wright S (1931) Evolution in mendelian populations. Genetics 16(2):97–159Google Scholar
  42. Wu B, Altrock PM, Wang L, Traulsen A (2010) Universality of weak selection. Phys Rev E 82(4):046106CrossRefGoogle Scholar
  43. Wu B, García J, Hauert C, Traulsen A (2013) Extrapolating weak selection in evolutionary games. PLoS Comput Biol 9(12):e1003381CrossRefGoogle Scholar
  44. Wu B, Bauer B, Galla T, Traulsen A (2015) Fitness-based models and pairwise comparison models of evolutionary games are typically different–even in unstructured populations. New J Phys 17(2):023043MathSciNetCrossRefGoogle Scholar
  45. Zheng X, Cressman R, Tao Y (2011) The diffusion approximation of stochastic evolutionary game dynamics: mean effective fixation time and the significance of the one-third law. Dyn Games Appl 1(3):462–477MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsEmmanuel CollegeBostonUSA
  2. 2.Program for Evolutionary DynamicsHarvard UniversityCambridgeUSA

Personalised recommendations