Journal of Mathematical Biology

, Volume 75, Issue 5, pp 1047–1073 | Cite as

Wavenumber selection in coupled transport equations

  • Arnd ScheelEmail author
  • Angela Stevens


We study mechanisms for wavenumber selection in a minimal model for run-and-tumble dynamics. We show that nonlinearity in tumbling rates induces the existence of a plethora of traveling- and standing-wave patterns, as well as a subtle selection mechanism for the wavenumbers of spatio-temporally periodic waves. We comment on possible implications for rippling patterns observed in colonies of myxobacteria.


Traveling wave Standing wave Balance laws Coupled transport equations Invasion fronts Wavenumber selection 

Mathematics Subject Classification

24B36 92C15 



A. Scheel was partially supported through NSF grants DMS-1612441 and DMS-1311740, through a DAAD Faculty Research Visit Grant, WWU Fellowship, and a Humboldt Research Award. A. Stevens was partially supported by the DFG Excellence Cluster Cells in Motion (CiM). A. Scheel gratefully acknowledges generous hospitality during his extended research stay at the WWU Münster.


  1. Alber MS, Jiang Y, Kiskowski MA (2004) Lattice gas cellular automata model for rippling and aggregation in myxobacteria. Phys D 191:343–358CrossRefzbMATHGoogle Scholar
  2. Anderson ARA, Vasiev BN (2005) An individual based model of rippling movement in a myxobacteria population. J Theor Biol 234:341–349MathSciNetCrossRefGoogle Scholar
  3. Ben-Naim E, Scheel A (2015) Pattern selection and super-patterns in the bounded confidence model. Europhys Lett 112:18002CrossRefGoogle Scholar
  4. Bers AN (1983) Space-time evolution of plasma instabilities-absolute and convective. In: Rosenbluth MN, Sagdeev RZ (eds) Handbook of plasma physics. North-Holland, AmsterdamGoogle Scholar
  5. Bonilla LL, Glavan A, Marquina A (2016) Wavelength selection of rippling patterns in myxobacteria. Phys Rev E 93:012412CrossRefGoogle Scholar
  6. Börner U, Bär M (2004) Pattern formation in a reaction-advection model with delay: a continuum approach to myxobacterial rippling. Ann Phys (Leipzig) 13:432–441MathSciNetCrossRefzbMATHGoogle Scholar
  7. Börner U, Deutsch A, Bär M (2006) A generalized discrete model linking rippling pattern formation and individual cell reversal statistics in colonies of myxobacteria. Phys Biol 3:138–146CrossRefGoogle Scholar
  8. Börner U, Deutsch A, Reichenbach H, Bär M (2001) Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Phys Rev Lett 89:078101CrossRefGoogle Scholar
  9. Briggs RJ (1964) Electron-stream interaction with plasmas. MIT Press, CambridgeGoogle Scholar
  10. Browne C, Dickerson A (2014) Mentors: G. Faye, A. Scheel. Coherent structures in scalar feed-forward chains. SIURO 7:306–329CrossRefGoogle Scholar
  11. Castets V, Dulos E, Boissonade J, De Kepper P (1990) Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys Rev Lett 64:2953CrossRefGoogle Scholar
  12. Collet P, Eckmann J-P (1986) The existence of dendritic fronts. Commun Math Phys 107:39–92MathSciNetCrossRefzbMATHGoogle Scholar
  13. Collet P, Eckmann J-P (1987) The stability of modulated fronts. Helv Phys Acta 60:969–991MathSciNetzbMATHGoogle Scholar
  14. Dee G, Langer JS (1983) Propagating pattern selection. Phys Rev Lett 50:383–386CrossRefGoogle Scholar
  15. Droz M (2000) Recent theoretical developments on the formation of Liesegang patterns. J Stat Phys 101:509–519CrossRefzbMATHGoogle Scholar
  16. Eckmann J-P, Schneider G (2002) Non-linear stability of modulated fronts for the Swift-Hohenberg equation. Commun Math Phys 225:361–397MathSciNetCrossRefzbMATHGoogle Scholar
  17. Ermentrout B (1981) Stable small amplitude solutions in reaction-diffusion systems. Q Appl Math 39:61–86MathSciNetCrossRefzbMATHGoogle Scholar
  18. Ermentrout B, Lewis M (1997) Pattern formation in systems with one spatially distributed species. Bull Math Biol 59:533–549CrossRefzbMATHGoogle Scholar
  19. Faye G, Holzer M, Scheel A. Linear spreading speeds from nonlinear resonant interaction. PreprintGoogle Scholar
  20. Gallay Th (1994) Local stability of critical fronts in non-linear parabolic partial differential equations. Nonlinearity 7:741–764MathSciNetCrossRefzbMATHGoogle Scholar
  21. Goh R, Mesuro S, Scheel A (2011) Spatial wavenumber selection in recurrent precipitation. SIAM J Appl Dyn Syst 10:360–402MathSciNetCrossRefzbMATHGoogle Scholar
  22. Goh R, Scheel A (2014) Triggered fronts in the complex Ginzburg Landau equation. J Nonlinear Sci 24:117–144MathSciNetCrossRefzbMATHGoogle Scholar
  23. Goh R, Scheel A (2016) Pattern formation in the wake of triggered pushed fronts. Nonlinearity 29:2196–2237MathSciNetCrossRefzbMATHGoogle Scholar
  24. Goh R, Beekie R, Matthias D, Nunley J, Scheel A (2016) Universal wavenumber selection laws in apical growth. Phys Rev E 94:022219. doi: 10.1103/PhysRevE.94.022219 CrossRefGoogle Scholar
  25. Haragus M, Schneider G (1999) Bifurcating fronts for the Taylor-Couette problem in infinite cylinders. Z Angew Math Phys 50:120–151MathSciNetCrossRefzbMATHGoogle Scholar
  26. Hillen T (1997) Invariance principles for hyperbolic random walks systems. J Math Anal Appl 210:360–374MathSciNetCrossRefzbMATHGoogle Scholar
  27. Hillen T (2010) Existence theory for correlated random walks on bounded domains. Can Appl Math Q 18:1–40MathSciNetzbMATHGoogle Scholar
  28. Holzer M, Scheel A (2014) Criteria for pointwise growth and their role in invasion processes. J Nonlinear Sci 24:661–709MathSciNetCrossRefzbMATHGoogle Scholar
  29. Horvath J, Szalai I, De Kepper P (2009) An experimental design method leading to chemical Turing patterns. Science 324:772–775CrossRefGoogle Scholar
  30. Huerre P, Monkewitz P (1990) Local and global instabilities in spatially developing flows. Ann Rev Fluid Mech 22:473–537MathSciNetCrossRefzbMATHGoogle Scholar
  31. Igoshin O, Mogilner A, Welch R, Kaiser D, Oster G (2001) Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc Natl Acad Sci USA 98:14913–14938CrossRefGoogle Scholar
  32. Igoshin OA, Neu J, Oster G (2004a) Developmental waves in myxobacteria: a distinctive pattern forming mechanism. Phys Rev E 70:041911MathSciNetCrossRefGoogle Scholar
  33. Igoshin OA, Welch R, Kaiser D, Oster G (2004b) Waves and aggregation patterns in myxobacteria. Proc Natl Acad Sci 101:4256–4261CrossRefGoogle Scholar
  34. Kaiser D, Kroos L (1993) Intercellular signaling. In: Dworking M, Kaiser D (eds) Myxobacteria II. American Society for Microbiology, WashingtonGoogle Scholar
  35. Kotzagiannidis M, Peterson J, Redford J, Scheel A, Wu Q(2012) Stable pattern selection through invasion fronts in closed two-species reaction-diffusion systems. In:Ogawa T, Ueda K (eds) RIMS Kokyuroku Bessatsu B31, far-from-equilibrium dynamics, pp 79–93Google Scholar
  36. Lagzi I (ed) (2010) Precipitation patterns in reaction-diffusion systems. Research Signpost, TrivandrumGoogle Scholar
  37. Liesegang RE (1896) Über einige Eigenschaften von Gallerten. Naturwiss Wochenschr 11:353–362Google Scholar
  38. Lutscher F, Stevens A (2002) Emerging patterns in a hyperbolic model for locally interacting cell systems. J Nonlinear Sci 12:619–640MathSciNetCrossRefzbMATHGoogle Scholar
  39. Primi I, Stevens A, Velazquez JJL (2013) Pattern forming instabilities driven by non-diffusive interactions. Netw Heterog Media 8:397–432MathSciNetCrossRefzbMATHGoogle Scholar
  40. Reichenbach H (1965) Rhythmische Vorgänge bei der Schwarmentfaltung von Myxobakterien. Ber Deutsch Bot Ges 78:102Google Scholar
  41. Sager B, Kaiser D (1994) Intracellular C-signaling and the traveling waves of Myxococcus. Genes Dev 8:2793–2804CrossRefGoogle Scholar
  42. Scheel A (2015) Spinodal decomposition and coarsening fronts in the Cahn–Hilliard equation. J Dyn Differ Equ. doi: 10.1007/s10884-015-9491-5
  43. Schier AF (2009) Nodal morphogens. Cold Spring Habor Perspect Biol 1:a003459Google Scholar
  44. Shimkets L, Kaiser D (1982) Murein components rescue developmental sporulation of Myxococcus xanthus. J Bacteriol 152:451–461Google Scholar
  45. Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314:1447–1450CrossRefGoogle Scholar
  46. Sliusarenko O, Neu J, Zusman DR, Oster G (2006) Accordion waves in Myxococcus xanthus. PNAS 103(5):1534–1539CrossRefGoogle Scholar
  47. Stevens A, Velazquez JJL (2008) Partial differential equations and non-diffusive structures. Nonlinearity 21(12):T283–T289MathSciNetCrossRefzbMATHGoogle Scholar
  48. Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout G, Epstein IR, Fraden S (2014) Testing Turings theory of morphogenesis in chemical cells. Proc Natl Acad Sci 111:4397–4402CrossRefGoogle Scholar
  49. Turing A (1952) The chemical basis of morphogenesis. Phil Trans R Soc B 237:37–72MathSciNetCrossRefGoogle Scholar
  50. van Saarloos W (2003) Front propagation into unstable states. Phys Rep 386:29–222CrossRefzbMATHGoogle Scholar
  51. Welch R, Kaiser D (2001) Cell behavior in traveling wave patterns of myxobacteria. PNAS 18:14907–14912CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Fachbereich Mathematik und InformatikUniversität MünsterMünsterGermany

Personalised recommendations