Advertisement

Journal of Mathematical Biology

, Volume 74, Issue 1–2, pp 259–287 | Cite as

A numerical scheme for the early steps of nucleation-aggregation models

  • Harvey Thomas Banks
  • Marie DoumicEmail author
  • Carola Kruse
Article
  • 211 Downloads

Abstract

In the formation of large clusters out of small particles, the initializing step is called the nucleation, and consists in the spontaneous reaction of agents which aggregate into small and stable polymers called nuclei. After this early step, the polymers are involved in a number of reactions such as polymerization, fragmentation and coalescence. Since there may be several orders of magnitude between the size of a particle and the size of an aggregate, building efficient numerical schemes to capture accurately the kinetics of the reaction is a delicate step of key importance. In this article, we propose a conservative scheme, based on finite volume methods on an adaptive grid, which is capable of simulating well the early steps of the reaction as well as the later chain reactions.

Keywords

Polymerization Aggregation-fragmentation models Finite volume schemes Adaptive grid 

Mathematics Subject Classification

65N08 35L02 35Q92 34K28 34E05 

Notes

Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research under Grant Number AFOSR FA9550-12-1-0188.

References

  1. Bourgade J, Filbet F (2008) Convergence of a finite volume scheme for coagulation–fragmentation equations. Math Comp 77(262):851–882MathSciNetCrossRefzbMATHGoogle Scholar
  2. Carrillo JA, Goudon T (2004) A numerical study on large-time asymptotics of the Lifshitz–Slyozov system. J Sci Comput 20(1):69–113MathSciNetCrossRefzbMATHGoogle Scholar
  3. Caizo JA, Desvillettes L, Fellner K (2010) Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion. Annales de lInstitut Henri Poincare Annales Analyse Non Lineaire Nonlinear Anal 27(2):639–654MathSciNetCrossRefzbMATHGoogle Scholar
  4. Collet J, Goudon T, Poupaud F, Vasseur A (2002) The Becker–Döring system and its Lifshitz-Slyozov limit. SIAM J Appl Math 62(5):1488–1500. doi: 10.1137/S0036139900378852. http://link.aip.org/link/?SMM/62/1488/1
  5. Collet J, Hariz S (1999) A modified version of the Lifshitz–Slyozov model. Appl Math Lett 12:81–95MathSciNetzbMATHGoogle Scholar
  6. Deschamps J, Hingant E, Yvinec R (2014) From a stochastic Becker–Döring model to the Lifschitz-Slyozov equation with boundary value. PreprintGoogle Scholar
  7. Deuflhard P, Huisinga W, Jahnke T, Wulkow M (2008) Adaptive discrete Galerkin methods applied to the chemical master equation. Technology 30(6):2990–3011MathSciNetzbMATHGoogle Scholar
  8. Diekmann O, Gyllenberg M, Metz J (2007) Physiologically structured population models: towards a general mathematical theory. Springer, Berlin, pp 5–20Google Scholar
  9. Doumic M, Goudon T, Lepoutre T (2009) Scaling limit of a discrete prion dynamics model. Commun Math Sci 7(4):839–865MathSciNetCrossRefzbMATHGoogle Scholar
  10. Filbet F (2008) An asymptotically stable scheme for diffusive coagulation–fragmentation models. Commun Math Sci 6(2):257–280MathSciNetCrossRefzbMATHGoogle Scholar
  11. Filbet F, Laurençot P (2003) Numerical approximation of the Lifshitz–Slyozov–Wagner equation. SIAM J Numer Anal 41(2):563–588 (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Filbet F, Laurençot P (2004) Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation. Arch Math (Basel) 83(6):558–567MathSciNetCrossRefzbMATHGoogle Scholar
  13. Filbet F, Laurençot P (2004) Numerical simulation of the Smoluchowski coagulation equation. SIAM J Sci Comput 25(6):2004–2028 (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Goudon T, Lagoutière F, Tine L (2012) The Lifschitz–Slyozov equation with space-diffusion of monomers. Kinetic Relat Models 5(2):325–355. doi: 10.3934/krm.2012.5.325 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Kumar J, Peglow M, Warnecke G, Heinrich S, Mörl L (2006) Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chem Eng Sci 61(10):3327–3342. doi: 10.1016/j.ces.2005.12.014
  16. Laurençot P, Mischler S (2002) From the discrete to the continuous coagulation–fragmentation equations. Proc Roy Soc Edinburgh Sect A 132(5):1219–1248MathSciNetCrossRefzbMATHGoogle Scholar
  17. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511791253 CrossRefGoogle Scholar
  18. Masel J, Jansen V, Nowak M (1999) Quantifying the kinetic parameters of prion replication. Biophys Chem 77(2–3):139–152. doi: 10.1016/S0301-4622(99)00016-2 CrossRefGoogle Scholar
  19. Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein. Academic Press, New YorkGoogle Scholar
  20. Penrose O (1989) Metastable states for the Becker–Döring cluster equations. Commun Math Phys 124(4):515–541MathSciNetCrossRefzbMATHGoogle Scholar
  21. Prigent S, Ballesta A, Charles F, Lenuzza N, Gabriel P, Tine L, Rezaei H, Doumic M (2012) An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation. PLoS One 7(11):e43273. doi: 10.1371/journal.pone.0043273 CrossRefGoogle Scholar
  22. Pruss J, Pujo-Menjouet L, Webb G, Zacher R (2006) Analysis of a model for the dynamics of prion. Dis Cont Dyn Syst Ser B 6(1):225–235MathSciNetzbMATHGoogle Scholar
  23. Sindi SS, Serio TR (2009) Prion dynamics and the quest for the genetic determinant in protein-only inheritance. Curr Opin Microbiol 12(6):623–630CrossRefGoogle Scholar
  24. Wulkow M (1996) The simulation of molecular weight distributions in polyreaction kinetics by discrete Galerkin methods. Macromol Theory Simul 5:396–416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Harvey Thomas Banks
    • 1
  • Marie Doumic
    • 2
    Email author
  • Carola Kruse
    • 2
  1. 1.Center for Research in Scientific Computation (CRSC)North Carolina State UniversityRaleighUSA
  2. 2.Sorbonne Universités, Inria, UPMC Univ Paris 06, Lab. J.L. Lions UMR CNRSParisFrance

Personalised recommendations