Advertisement

Journal of Mathematical Biology

, Volume 74, Issue 1–2, pp 113–147 | Cite as

Is a nonlocal diffusion strategy convenient for biological populations in competition?

  • Annalisa MassaccesiEmail author
  • Enrico Valdinoci
Article

Abstract

We study the viability of a nonlocal dispersal strategy in a reaction-diffusion system with a fractional Laplacian operator. We show that there are circumstances—namely, a precise condition on the distribution of the resource—under which the introduction of a new nonlocal dispersal behavior is favored with respect to the local dispersal behavior of the resident population. In particular, we consider the linearization of a biological system that models the interaction of two biological species, one with local and one with nonlocal dispersal, that are competing for the same resource. We give a simple, concrete example of resources for which the equilibrium with only the local population becomes linearly unstable. In a sense, this example shows that nonlocal strategies can invade an environment in which purely local strategies are dominant at the beginning, provided that the resource is sufficiently sparse. Indeed, the example considered presents a high variance of the distribution of the dispersal, thus suggesting that the shortage of resources and their unbalanced supply may be some of the basic environmental factors that favor nonlocal strategies.

Keywords

Fractional equations Population dynamics 

Mathematics Subject Classification

35Q92 46N60 

References

  1. Aluffi G (2014) Per andare a caccia la medusa si muove come un computer. Il Venerdì di RepubblicaGoogle Scholar
  2. Ambrosetti A, Prodi G (1972) On the inversion of some differentiable mappings with singularities between Banach spaces. Ann Mat Pura Appl 4(93):231–246MathSciNetCrossRefzbMATHGoogle Scholar
  3. Berestycki H, Lions P-L, Peletier LA (1981) An ODE approach to the existence of positive solutions for semilinear problems in \({ R}^{N}\). Indiana Univ Math J 30(1):141–157MathSciNetCrossRefzbMATHGoogle Scholar
  4. Berestycki H, Roquejoffre J-M, Rossi L (2011) The periodic patch model for population dynamics with fractional diffusion. Discrete Contin Dyn Syst Ser S 4(1):1–13MathSciNetCrossRefzbMATHGoogle Scholar
  5. Boyadjiev G, Kutev N (2002) Comparison principle for quasilinear elliptic and parabolic systems. C R Acad Bulgare Sci 55(1):9–12MathSciNetzbMATHGoogle Scholar
  6. Cabré X, Roquejoffre J-M (2009) Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire. C R Math Acad Sci Paris 347(23–24):1361–1366MathSciNetCrossRefzbMATHGoogle Scholar
  7. Caffarelli L, Dipierro S, Valdinoci E (2016) A logistic equation with nonlocal interactions (in press)Google Scholar
  8. Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley Series in Mathematical and Computational Biology. Wiley, ChichesterGoogle Scholar
  9. Cantrell RS, Cosner C, Lou Y, Ryan D (2012) Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model. Can Appl Math Q 20(1):15–38MathSciNetzbMATHGoogle Scholar
  10. Chen X, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction-diffusion-advection model. J Math Biol 57(3):361–386MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cosner C, Dávila J, Martínez S (2012) Evolutionary stability of ideal free nonlocal dispersal. J Biol Dyn 6(2):395–405MathSciNetCrossRefGoogle Scholar
  12. Cosner C, Hutson V (1993) Permanence in ecological systems with spatial heterogeneity. Proc R Soc Edinb Sect A 123(3):533–559MathSciNetCrossRefzbMATHGoogle Scholar
  13. Cosner C, Hutson V (1996) Ecological models, permanence and spatial heterogeneity. Rocky Mt J Math 26(1):1–35MathSciNetCrossRefzbMATHGoogle Scholar
  14. Cosner C, Lou Y (2007) Advection-mediated coexistence of competing species. Proc R Soc Edinb Sect A 137(3):497–518MathSciNetCrossRefzbMATHGoogle Scholar
  15. Cosner C, Lou Y (2010) Evolution of dispersal and the ideal free distribution. Math Biosci Eng 7(1):17–36MathSciNetCrossRefzbMATHGoogle Scholar
  16. Cotsiolis A, Tavoularis NK (2004) Best constants for Sobolev inequalities for higher order fractional derivatives. J Math Anal Appl 295(1):225–236MathSciNetCrossRefzbMATHGoogle Scholar
  17. de la Llave R, Valdinoci E (2007) Multiplicity results for interfaces of Ginzburg–Landau–Allen–Cahn equations in periodic media. Adv Math 215(1):379–426MathSciNetCrossRefzbMATHGoogle Scholar
  18. Di Nezza E, Palatucci G, Valdinoci E (2012) Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math 136(5):521–573MathSciNetCrossRefzbMATHGoogle Scholar
  19. Diekmann O (2004) A beginner’s guide to adaptive dynamics. In Mathematical modelling of population dynamics, vol 63. Banach Center Publishing, pp 47–86. Polish Academy of Sciences, WarsawGoogle Scholar
  20. Dipierro S, Savin O, Valdinoci E (2016) All functions are locally \(s\)-harmonic up to a small error. J Eur Math Soc (JEMS) (in press)Google Scholar
  21. Dockery J, Hutson V, Mischaikow K, Pernarowski M (1998) The evolution of slow dispersal rates: a reaction diffusion model. J Math Biol 37(1):61–83MathSciNetCrossRefzbMATHGoogle Scholar
  22. Friedman A (2012) PDE problems arising in mathematical biology. Netw Heterog Media 7(4):691–703MathSciNetCrossRefzbMATHGoogle Scholar
  23. Gilbarg D, Trudinger NS (2001) Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (reprint 1998 edn)Google Scholar
  24. Hastings A (1983) Can spatial variation alone lead to selection for dispersal? Theor Popul Biol 24(3):244–251MathSciNetCrossRefzbMATHGoogle Scholar
  25. Hirsch MW, Smith HL (2003) Competitive and cooperative systems: mini-review. In Positive systems (Rome, 2003). Lecture notes in control and informatics and sciences, vol 294, pp 183–190. Springer, BerlinGoogle Scholar
  26. Hirsch MW (1988a) Stability and convergence in strongly monotone dynamical systems. J Reine Angew Math 383:1–53Google Scholar
  27. Hirsch MW (1988b) Systems of differential equations which are competitive or cooperative. III. Competing species. Nonlinearity 1(1):51–71Google Scholar
  28. Hirsch MW (1982) Systems of differential equations which are competitive or cooperative. I. Limit sets. SIAM J Math Anal 13(2):167–179MathSciNetCrossRefzbMATHGoogle Scholar
  29. Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JDR, Hays GC, Jones CS, Noble LR, Wearmouth VJ, Southall EJ, Sims DW (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465:1066–1069CrossRefGoogle Scholar
  30. Hutson V, Mischaikow K, Poláčik P (2001) The evolution of dispersal rates in a heterogeneous time-periodic environment. J Math Biol 43(6):501–533MathSciNetCrossRefzbMATHGoogle Scholar
  31. Hutson V, Martinez S, Mischaikow K, Vickers GT (2003) The evolution of dispersal. J Math Biol 47(6):483–517MathSciNetCrossRefzbMATHGoogle Scholar
  32. Kao C-Y, Lou Y, Shen W (2010) Random dispersal vs. non-local dispersal. Discrete Contin Dyn Syst 26(2):551–596MathSciNetzbMATHGoogle Scholar
  33. Kao C-Y, Lou Y, Shen W (2012) Evolution of mixed dispersal in periodic environments. Discrete Contin Dyn Syst Ser B 17(6):2047–2072MathSciNetCrossRefzbMATHGoogle Scholar
  34. Montefusco E, Pellacci B, Verzini G (2012) Fractional diffusion with Neumann boundary conditions: the logistic equations (in press)Google Scholar
  35. Mora X (1983) Semilinear parabolic problems define semiflows on \(C^{k}\) spaces. Trans Am Math Soc 278(1):21–55MathSciNetzbMATHGoogle Scholar
  36. Smith HL (1995) Monotone dynamical systems. Mathematical surveys and monographs, vol 41. An introduction to the theory of competitive and cooperative systems. American Mathematical Society, ProvidenceGoogle Scholar
  37. Stan D, Vázquez JL (2014) The Fisher-KPP equation with nonlinear fractional diffusion. SIAM J Math Anal 46(5):3241–3276MathSciNetCrossRefzbMATHGoogle Scholar
  38. Valdinoci Enrico (2009) From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. S\(\vec{\rm e}\)MA, (49):33–44Google Scholar
  39. Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE Lévy flight search patterns of wandering albatrosses. Nature 381(1):413–415Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Universität ZürichZürichSwitzerland
  2. 2.Weierstrass InstituteBerlinGermany

Personalised recommendations