Journal of Mathematical Biology

, Volume 73, Issue 2, pp 469–490 | Cite as

Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain

  • M. Coloma
  • J. D. Schaffer
  • R. O. Carare
  • P. R. Chiarot
  • P. HuangEmail author


Beta-amyloid accumulation within arterial walls in cerebral amyloid angiopathy is associated with the onset of Alzheimer’s disease. However, the mechanism of beta-amyloid clearance along peri-arterial pathways in the brain is not well understood. In this study, we investigate a transport mechanism in the arterial basement membrane consisting of forward-propagating waves and their reflections. The arterial basement membrane is modeled as a periodically deforming annulus filled with an incompressible single-phase Newtonian fluid. A reverse flow, which has been suggested in literature as a beta-amyloid clearance pathway, can be induced by the motion of reflected boundary waves along the annular walls. The wave amplitude and the volume of the annular region govern the flow magnitude and may have important implications for an aging brain. Magnitudes of transport obtained from control volume analysis and numerical solutions of the Navier–Stokes equations are presented.


Perivascular transport Interstitial fluid flow Alzheimer’s disease 

Mathematics Subject Classification

Primary: 76Z05 Physiological Flows 



M.C. would like to acknowledge the support of the Clifford D. Clark Diversity Fellowship. J.D.S., P.R.C., and P.H. would like to acknowledge the State Univeristy of New York at Binghamton University Interdisciplinary Collaborative Grant program for supporting this work.


  1. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4):545–552MathSciNetCrossRefGoogle Scholar
  2. Alastruey J, Parker KH, Sherwin SJ (2012) Arterial pulse wave haemodynamics. In: Anderson. 11th international conference on pressure surges, pp 401-442Google Scholar
  3. Alzheimer’s Association (2010) 2010 Alzheimer’s disease facts and figures. Alzheimer’s Dement 6(2):158-194Google Scholar
  4. Bilston L, Flecther D, Brodbelt A, Stoody M (2003) Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput Methods Biomech Biomed Eng 6(4):235–241CrossRefGoogle Scholar
  5. Carare RO, Bernardes-Silva M, Newman T, Newman T, a, Page a M, Nicoll J a R, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144CrossRefGoogle Scholar
  6. Elmore WC, Heald MA (1969) Physics of waves. Courier Corporation, New YorkGoogle Scholar
  7. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611CrossRefGoogle Scholar
  8. Fung YC (1984) Biodynamics circulation. Springer, New YorkGoogle Scholar
  9. Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121(4):431–443CrossRefGoogle Scholar
  10. Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO (2013) Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid- from the mouse brain. Aging cell 12(2):224–236CrossRefGoogle Scholar
  11. Hughes TM, Kuller LH, Barinas-Mitchell EJ, McDade EM, Klunk WE, Cohen AD, Mathis CA, DeKosky ST, Price JC, Lopez OL (2014) Arterial stiffness and beta-amyloid progression in nondemented elderly adults. JAMA Neurol 71(5):562–568CrossRefGoogle Scholar
  12. Iliff JJ, Wang MH, Liao YH, Plog BA, Peng WG, Gundersen GA, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111CrossRefGoogle Scholar
  13. Iliff JJ, Wang MH, Zeppenfeld DM, Venkataraman A, Plog BA, Liao YH, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33(46):18190–18199CrossRefGoogle Scholar
  14. Kamath S (1981) Observations on the length and diameter of vessels forming the circle of Willis. J Anat 133(3):419–423Google Scholar
  15. Knopf PM, Cserr HF, Nolan SC, Wu TY, Harlingberg CJ (1995) Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal-fluid from the brain. Neuropathol Appl Neurobiol 21(3):175–180CrossRefGoogle Scholar
  16. Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, Alvarez H, terBrugge KG, Hans FJ (2011) Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol 7(10):547–559CrossRefGoogle Scholar
  17. Li JK (2004) Dynamics of the vascular system. World Scientific, SingaporeCrossRefGoogle Scholar
  18. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774–1774CrossRefGoogle Scholar
  19. Nichols WW (2005) Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18(1):3S–10SMathSciNetCrossRefGoogle Scholar
  20. Nichols W, O’Rourke M, Vlachopoulos C (2011) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. CRC Press, Boca RatonGoogle Scholar
  21. Papageorgiou GL, Jones BN, Redding VJ, Hudson N (1990) The area ratio of normal arterial junctions and its implications in pulse waves. Cardiovasc Res 24(6):478–484CrossRefGoogle Scholar
  22. Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO (2003) Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease : defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29(2):106–118CrossRefGoogle Scholar
  23. Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol 238(4):962–974MathSciNetCrossRefGoogle Scholar
  24. Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer’s A beta peptide: the many roads to perdition. Neuron 43(5):605–608Google Scholar
  25. Wang P, Olbricht WL (2011) Fluid mechanics in the perivascular space. J Theor Biol 274(1):52–57MathSciNetCrossRefzbMATHGoogle Scholar
  26. Weller R, Subash M, Preston S, Mazanti I, Carare R (2008) Perivascular drainage of amyloid-\(\upbeta \) peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266CrossRefGoogle Scholar
  27. Weller RO, Galea I, Carare RO, Minagar a (2010) Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17(4):295–306CrossRefGoogle Scholar
  28. Yang ST, Mayhan WG, Faraci FM, Heistad DD (1991) Endothelium-dependent responses of cerebral blood-vessels during chronic hypertension. Hypertension 17(5):612–618CrossRefGoogle Scholar
  29. Yao W, Li YB, Ding GH (2012) Interstitial fluid flow: the mechanical environment of cells and foundation of Meridians. Evid Based Complement Alternat Med 2012:853516. doi: 10.1155/2012/853516 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Coloma
    • 1
  • J. D. Schaffer
    • 2
  • R. O. Carare
    • 3
  • P. R. Chiarot
    • 1
  • P. Huang
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringState University of New York at BinghamtonBinghamtonUSA
  2. 2.College of Community and Public AffairsState University of New York at BinghamtonBinghamtonUSA
  3. 3.Faculty of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations