Advertisement

An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture

Abstract

Mechanical interactions between cells and the fibrous extracellular matrix (ECM) in which they reside play a key role in tissue development. Mechanical cues from the environment (such as stress, strain and fibre orientation) regulate a range of cell behaviours, including proliferation, differentiation and motility. In turn, the ECM structure is affected by cells exerting forces on the matrix which result in deformation and fibre realignment. In this paper we develop a mathematical model to investigate this mechanical feedback between cells and the ECM. We consider a three-phase mixture of collagen, culture medium and cells, and formulate a system of partial differential equations which represents conservation of mass and momentum for each phase. This modelling framework takes into account the anisotropic mechanical properties of the collagen gel arising from its fibrous microstructure. We also propose a cell–collagen interaction force which depends upon fibre orientation and collagen density. We use a combination of numerical and analytical techniques to study the influence of cell–ECM interactions on pattern formation in tissues. Our results illustrate the wide range of structures which may be formed, and how those that emerge depend upon the importance of cell–ECM interactions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Barocas VH, Tranquillo RT (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment and cell contact guidance. J Biomech Eng 119:137–145

  2. Barocas VH, Moon AG, Tranquillo RT (1995) The fibroblast-populated collagen microsphere assay of cell traction force—Part 2: measurement of the cell traction parameter. J Biomech Eng 117:161–170

  3. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

  4. Breward CJW, Byrne HM, Lewis CE (2002) The role of cell–cell interactions in a two-phase model for avascular tumour growth. J Math Biol 45(2):125–152

  5. Byfield FJ, Reen RK, Shentu TP, Levitan I, Gooch KJ (2009) Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J Biomech 42(8):1114–1119

  6. Byrne HM, Preziosi L (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol 20:341–366

  7. Byrne HM, King JR, McElwain DLS, Preziosi L (2003) A two-phase model of solid tumour growth. Appl Math Lett 16(4):567–573

  8. Chauviere A, Hillen T, Preziosi L (2007) Modelling cell movement in anisotropic and heterogeneous network tissues. Netw Heterog Media 2(2):333–357

  9. Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V. J Comput Phys 141:199–224

  10. Cook J (1995) Mathematical models for dermal wound healing: wound contraction and scar formation. PhD thesis, University of Washington

  11. Cukierman E, Bassi DE (2010) Physico-mechanical aspects of extracellular matrix influences on tumourigenic behaviors. Semin Cancer Biol 20(3):139–145

  12. Dhimolea E, Maffini MV, Soto AM, Sonnenschein C (2010) The role of collagen reorganization on mammary epithelial morphogenesis in a 3d culture model. Biomaterials 31:3622–3630

  13. Drew DA (1983) Mathematical modelling of two-phase flow. Ann Rev Fluid Mech 15:261–291

  14. Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472–503

  15. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

  16. Ericksen JL (1960) Transversely isotropic fluids. Colloid Polym Sci 173(2):117–122

  17. Eriksson K, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Cambridge University Press, Cambridge

  18. Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684–704

  19. Green JEF, Friedman A (2008) The extensional flow of a thin sheet of incompressible, transversely isotropic fluid. Euro J Appl Math 19(3):225–257

  20. Green JEF, Waters SL, Shakesheff KM, Byrne HM (2009) A mathematical model of liver cell aggregation in vitro. Bull Math Biol 71:906–930

  21. Green JEF, Waters SL, Shakesheff KM, Edelstein-Keshet L, Byrne HM (2010) Non-local models for the interactions of hepatocytes and stellate cells during aggregation. J Theor Biol 267(1):106–120

  22. Green JEF, Bassom AP, Friedman A (2013) A mathematical model for cell-induced gel compaction in vitro. Math Models Methods Appl Sci 23(1):127–163. doi:10.1142/S0218202512500479

  23. Häcker A (2012) A mathematical model for mesenchymal and chemosensitive cell dynamics. J Math Biol 64:361–401

  24. Hillen T (2006) M\(^5\) mesoscopic and macroscopic models for mesenchymal motion. J Math Biol 53(4):585–616

  25. Hinch EJ, Leal LG (1975) Constitutive equations in suspension mechanics. Part 1. General formulation. J Fluid Mech 71(3):481–495

  26. Hinch EJ, Leal LG (1976) Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J Fluid Mech 76(1):187–208

  27. Holloway C, Dyson R, Smith D (2015) Linear Taylor-Couette stability of a transversely isotropic fluid. Proc R Soc A 471:20150141. doi:10.1098/rspa.2015.0141

  28. Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 50:255–266

  29. Ingber DE (2008) Can cancer be reversed by engineering the tumour microenvironment? Semin Cancer Biol 18(5):356–364

  30. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

  31. Kabla A, Mahadevan L (2007) Nonlinear mechanics of soft fibre networks. J R Soc Interface 4(12):99–106

  32. Kirkpatrick ND, Andreou S, Hoying JB, Utzinger U (2007) Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circ Physiol 292(6):H3198–H3206

  33. Knapp DM, Barocas VH, Moon AG, Yoo K, Petzold LR, Tranquillo RT (1997) Rheology of reconstituted type i collagen gel in confined compression. J Rheol 41:971–933

  34. Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112:3249–3258

  35. Krause S, Maffini MV, Soto AM, Sonnenschein C (2008) A novel 3d in vitro culture model to study stromal–epithelial interactions in the mammary gland. Tissue Eng 14:261–271

  36. Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumour cell. Cancer Metastasis Rev 28:113–127

  37. Lee MEM (2001) Mathematical models of the carding process. PhD thesis, University of Oxford

  38. Lee MEM, Ockendon H (2005) A continuum model for entangled fibres. Euro J Appl Math 16:145–160

  39. Lemon G, King JR, Byrne HM, Jensen OE, Shakesheff KM (2006) Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J Math Biol 52:571–594

  40. Lopez JI, Mouw JK, Weaver VM (2008) Biomechanical regulation of cell orientation and fate. Oncogene 27:6981–6993

  41. Manoussaki D, Lubkin S, Vemon R, Murray J (1996) A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44(3–4):271–282

  42. Martins-Green M, Bissell MJ (1995) Cell–ECM interactions in development. Semin Dev Biol 6:149–159

  43. Murray JD (1993) Mathematical biology, 2nd edn. Springer, New York

  44. Namy P, Ohayon J, Tracqui P (2004) Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J Theor Biol 227:103–120

  45. Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signalling: tissue architecture regulates development, homeostasis and cancer. Ann Rev Cell Dev Biol 22:287–309

  46. O’Dea RD, Waters SL, Byrne HM (2008) A two-fluid model for tissue growth within a dynamic flow environment. Euro J Appl Math 19(06):607–634

  47. O’Dea RD, Waters SL, Byrne HM (2010) A multiphase model for tissue construct growth in a perfusion bioreactor. Math Med Biol 27(2):95–127

  48. Olsen L, Maini PK, Sherratt JA, Dallon J (1999) Mathematical modelling of anisotropy in fibrous connective tissue. Math Biosci 158(2):145–170

  49. Osborne JM, Whiteley JP (2010) A numerical method for the multiphase viscous flow equations. Comput Methods Appl Mech Eng 199:3402–3417

  50. Oster GF, Murray JD, Harris AK (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol 78:83–125

  51. Painter KJ (2009) Modelling cell migration strategies in the extracellular matrix. J Math Biol 58:511–543

  52. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89(19):9064–9068. doi:10.1073/pnas.89.19.9064

  53. Petrie CJS (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87:369–402

  54. Peyton SR, Ghajar CM, Khatiwala CB, Putnam AJ (2007) The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 47:300–320

  55. Ronnov-Jessen L, Bissell MJ (2008) Breast cancer by proxy: can the microenvironment be both the cause and consequence? Trends Mol Med 15(1):5–13

  56. Schreiber DI, Barocas VH, Tranquillo RT (2003) Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys J 84:4102–4114

  57. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26:1097–1107

  58. Spain B (1953) Tensor calculus. Oliver and Boyd, Edinburgh

  59. Stevenson MD, Sieminski AL, McLeod CM, Byfield FJ, Barocas VH, Gooch KJ (2010) Pericellular conditions regulate extent of cell-mediated compaction of collagen gels. Biophys J 99:19–28

  60. Strand DW, Franco OE, Basanta D, Anderson ARA, Hayward SW (2010) Perspectives on tissue interactions in development and disease. Curr Mol Med 10:95–112

  61. Szymanska Z, Morales-Rodrigo C, Lachowicz M, Chaplain MAJ (2009) Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math Models Methods Appl Sci 19(2):257–281

  62. Takakuda K, Miyairi H (1996) Tensile behaviour of fibroblasts cultured in collagen gel. Biomaterials 17(14):1393–1397

  63. Thompson DW (1942) On growth and form, 2nd edn. Cambridge University Press, Cambridge

  64. Tosin A, Ambrosi D, Preziosi L (2006) Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull Math Biol 68(7):1819–1836

  65. Tranquillo RT, Murray JD (1993) Mechanistic model of wound contraction. J Surg Res 55:233–247

  66. Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. PLoS One 4(6):e5902. doi:10.1371/journal.pone.0005902

  67. Weigelt B, Bissell MJ (2008) Unravelling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18:311–321

  68. Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-\(\beta 1\) from the extracellular matrix. J Cell Biol 179(6):1311–1323

Download references

Acknowledgments

We thank A.M. Soto and C. Sonnenschein (Tufts University) for the initial discussions which led to the development of the model, and D.J. Smith (University of Birmingham) for assistance with aspects of the numerics. RJD gratefully acknowledges the support of the University of Birmingham’s System Science for Health initiative and the hospitality of the School of Mathematical Sciences at the University of Adelaide. JEFG is supported by a Discovery Early Career Researcher Award (DE130100031) from the Australian Research Council. The work of HMB was supported in part by award KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).

Author information

Correspondence to J. E. F. Green.

Additional information

R. J. Dyson and J. E. F. Green are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 18260 KB)

Supplementary material 2 (avi 19655 KB)

Supplementary material 3 (avi 18876 KB)

Supplementary material 1 (avi 18260 KB)

Supplementary material 2 (avi 19655 KB)

Supplementary material 3 (avi 18876 KB)

Appendix A: Approximation of the cell force, \(\varvec{F}_c\)

Appendix A: Approximation of the cell force, \(\varvec{F}_c\)

In this appendix, we give details of the calculation that leads to the leading-order expression for the cell force given in Eq. (14). Note that we suppress time dependence within this section for notational convenience. We begin by using the fact that \(\varvec{x}' = \varvec{x} + \eta \varvec{\xi }\), where \(\eta \ll 1\), to expand the terms in Eq. (13) which are evaluated at \(\varvec{x}'\) as follows:

$$\begin{aligned} \varvec{a}\left( \varvec{x}'\right)= & {} \varvec{a}(\varvec{x}) + \eta (\varvec{\xi } \cdot \nabla ) \varvec{a}\vert _{\varvec{ x}}+ O(\eta ^2),\end{aligned}$$
(31a)
$$\begin{aligned} \phi _n\left( \varvec{ x}'\right)= & {} \phi _n\left( \varvec{ x}\right) + \eta (\varvec{\xi } \cdot \nabla )\phi _n\vert _{\varvec{ x}} + O(\eta ^2),\end{aligned}$$
(31b)
$$\begin{aligned} \phi _c\left( \varvec{ x}'\right)= & {} \phi _c\left( \varvec{ x}\right) + \eta (\varvec{\xi } \cdot \nabla )\phi _c\vert _{\varvec{ x}} + O(\eta ^2), \end{aligned}$$
(31c)

where the notation \((\varvec{\xi } \cdot \nabla ) \varvec{a}\vert _{\varvec{ x}}\) is intended to emphasise the fact that the directional derivatives are evaluated at the point \(\varvec{x}\).

On integration, the contribution of the leading-order terms in the integral is zero by symmetry. Proceeding to next order, we find

$$\begin{aligned} \varvec{F}_c(\varvec{x})= & {} \eta ^{N+2} \int _{{\varOmega }} F(|\varvec{\xi }|) \varvec{\xi }[\phi ^2_c (2 \phi _n (\varvec{a} \cdot \hat{\varvec{\xi }}) [( (\varvec{\xi } \cdot \nabla ) \varvec{a} ) \cdot \hat{\varvec{\xi }}]\nonumber \\&+\, (\varvec{a} \cdot \hat{\varvec{\xi }})^2 (\varvec{\xi } \cdot \nabla ) \phi _n )+ 2 \phi _n \phi _c (\varvec{a} \cdot \hat{\varvec{\xi }} )^2 ( \varvec{\xi } \cdot \nabla ) \phi _c]\,d^N \xi , \end{aligned}$$
(32)

where \(\hat{\varvec{\xi }} = \varvec{\xi } / | \varvec{\xi }|\), and \(\phi _n\), \(\phi _c\) and \(\varvec{a}\) are evaluated at \(\varvec{x}\) (unless otherwise stated). In component form we have

$$\begin{aligned} F_{{c}_i}= & {} \eta ^{N+2} \int _{{\varOmega }} F(|\varvec{\xi }|) \xi _i \left[ \phi ^2_c \left( 2 \phi _n a_l \hat{\xi }_l \xi _k \frac{\partial a_j}{\partial x_k} \hat{\xi }_j + a_j \hat{\xi }_j a_l \hat{\xi }_l \xi _k \frac{\partial \phi _n}{\partial x_k} \right) \right. \nonumber \\&\left. +\, 2 \phi _n \phi _c a_l \hat{\xi }_l a_j \hat{\xi }_j \xi _k \frac{\partial \phi _c }{\partial x_k} \right] \, d^N \xi , \end{aligned}$$
(33)

or, equivalently

$$\begin{aligned} F_{{c}_i} = \eta ^{N+2} \int _{{\varOmega }} F(|\varvec{\xi }|) \frac{1}{|\varvec{\xi }|^2} \xi _i \xi _j \xi _k \xi _l T_{j k l} \, d^N \xi = A_{i j k l}(\varvec{\xi }) T_{j k l}(\varvec{x}), \end{aligned}$$
(34)

where \(T_{j k l}\) is independent of \(\varvec{\xi }\), and is given by

$$\begin{aligned} T_{j k l} (\varvec{x}) = \left( a_j \frac{\partial }{\partial x_k} (\phi _n \phi ^2_c) + 2 \phi _n \phi ^2_c \frac{\partial a_j}{\partial x_k} \right) a_l , \end{aligned}$$
(35)

and

$$\begin{aligned} A_{i j k l} = \int _{{\varOmega }}F(|\varvec{\xi }|) \frac{1}{|\xi |^2} \xi _i \xi _j \xi _k \xi _l\, d^N \xi . \end{aligned}$$
(36)

Since \(A_{i j k l}\) is an isotropic integral, it must be of the form (Spain 1953)

$$\begin{aligned} A_{i j k l} = \lambda _1 \delta _{i j} \delta _{k l} + \lambda _2 \delta _{i k} \delta _{j l} + \lambda _3 \delta _{i l} \delta _{j k }. \end{aligned}$$
(37)

Furthermore, since \(A_{i j k l} = A_{i k j l} = A_{i l j k}\), we deduce that

$$\begin{aligned} \lambda _1 = \lambda _2 = \lambda _3 = \lambda ^*. \end{aligned}$$
(38)

From Eqs. (36) and (37) we note that

$$\begin{aligned} A_{i i k l} = \int _{{\varOmega }} F(|\xi |) \xi _k \xi _l \, d^N \xi = \left( N +2 \right) \lambda ^* \delta _{k l} , \end{aligned}$$
(39)

and contracting over the remaining indices we obtain

$$\begin{aligned} N(N+2) \lambda ^* = \int _{{\varOmega }} F(|\xi |) |\xi |^2 \, d^N \xi . \end{aligned}$$
(40)

Hence, on substituting Eq. (37) into Eq. (34), and on using the well-known properties of the Kronecker delta and the fact \(|\varvec{a}|=1\), we find

$$\begin{aligned} \varvec{F}_{c}(\varvec{x})= & {} \lambda [2 \phi _n \phi _c^2 (\varvec{a} \cdot \nabla ) \varvec{a} + \varvec{a} \phi _c^2 (\varvec{a} \cdot \nabla ) \phi _n +\phi _n \varvec{a} ( (\varvec{a} \cdot \nabla ) \phi ^2_c) ] \nonumber \\&+\, \lambda [\phi _c^2 \nabla \phi _n +\phi _n \nabla (\phi _c^2) ]\nonumber \\&+\,\lambda [2 \phi _n \phi _c^2 (\nabla \cdot \varvec{a}) \varvec{a} + \phi _c^2 \varvec{a} (\varvec{a} \cdot \nabla ) \phi _n + \phi _n \varvec{a} (\varvec{a} \cdot \nabla \phi ^2_c)], \end{aligned}$$
(41)

where we have assumed that \(\lambda = \eta ^{N+2} \lambda ^* = O(1)\). A little algebra then yields

$$\begin{aligned} \varvec{F}_c(\varvec{x}) = 2 \lambda \left[ (\varvec{a} \cdot \nabla ) (\phi _n \phi _c^2 \varvec{a} ) + \phi _n \phi _c^2 \varvec{a} (\nabla \cdot \varvec{a}) +\frac{1}{2} \nabla (\phi _c^2 \phi _n )\right] . \end{aligned}$$
(42)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dyson, R.J., Green, J.E.F., Whiteley, J.P. et al. An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture. J. Math. Biol. 72, 1775–1809 (2016) doi:10.1007/s00285-015-0927-7

Download citation

Keywords

  • Multiphase model
  • Collagen fibres
  • Cell aggregation
  • Mechanics

Mathematics Subject Classification

  • 92C10
  • 92C15
  • 92C17
  • 76T30
  • 76Z99
  • 35Q92