Journal of Mathematical Biology

, Volume 72, Issue 6, pp 1607–1632 | Cite as

Scale invariance analysis for genetic networks applying homogeneity

  • Emmanuel Bernuau
  • Denis Efimov
  • Wilfrid Perruquetti
Article

Abstract

Scalability is a property describing the change of the trajectory of a dynamical system under a scaling of the input stimulus and of the initial conditions. Particular cases of scalability include the scale invariance and fold change detection (when the scaling of the input does not influence the system output). In the present paper it is shown that homogeneous systems have this scalability property while locally homogeneous systems approximately possess this property. These facts are used for detecting scale invariance or approximate scalability (far from a steady state) in several biological systems. The results are illustrated by various regulatory networks.

Mathematics Subject Classification

92D25 37C75 37C80 34D20 

References

  1. Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman & Hall, Boca RatonMATHGoogle Scholar
  2. Andrieu V, Praly L, Astolfi A (2008) Homogeneous approximation, recursive observer design, and output feedback. SIAM J Control Optim 47(4):1814–1850Google Scholar
  3. Bacciotti A, Rosier L (2005) Lyapunov functions and stability in control theory, 2nd edn. Springer, New YorkCrossRefMATHGoogle Scholar
  4. Bernuau E, Efimov D, Perruquetti W (2014) Robustness of homogeneous and locally homogeneous differential inclusions. In: Proceedings of ECC 2014Google Scholar
  5. Bernuau E, Polyakov A, Efimov D, Perruquetti W (2013a) ISS and iISS properties of homogeneous systems. In: Proceedings of ECC 2013Google Scholar
  6. Bernuau E, Polyakov A, Efimov D, Perruquetti W (2013b) Verification of ISS, iISS and IOSS properties applying weighted homogeneity. Syst Control Lett 62(12):1159–1167Google Scholar
  7. Efimov D, Perruquetti W (2010) Oscillations conditions in homogenous systems. In: Proceedings of IFAC NOLCOS symposium, pp 1379–1384Google Scholar
  8. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338Google Scholar
  9. Gisiger T (2001) Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol Rev Camb Philos Soc 76(02):161–209Google Scholar
  10. Gonze D, Abou-Jaoudé W (2013) The goodwin model: behind the hill function. PLoS One 8(8):e69573Google Scholar
  11. Hamadeh A, Ingalls B, Sontag E (2013) Transient dynamic phenotypes as criteria for model discrimination: foldchange detection in rhodobacter sphaeroides chemotaxis. Proc R Soc Interface 10:20120935CrossRefGoogle Scholar
  12. Hermes H (1986) Nilpotent approximations of control systems and distributions. SIAM J Control Optim 24:731MathSciNetCrossRefMATHGoogle Scholar
  13. Ingalls B, Sontag E (2002) A small-gain lemma with applications to input/output systems, incremental stability, detectability, and interconnections. J Frankl Inst 339:211–229MathSciNetCrossRefMATHGoogle Scholar
  14. Kawski M (1995) Geometric homogeneity and stabilization. In: Krener A, Mayne D (eds) Proceedings of IFAC nonlinear control symposium. Lake Tahoe, pp 164–169Google Scholar
  15. Khomenuk VV (1961) On systems of ordinary differential equations with generalized homogenous right-hand sides. Izvestia vuzov. Mathematica 3(22):157–164 (in Russian)Google Scholar
  16. Leloup J-C, Gonze D, Goldbeter A (1999) On systems of ordinary differential equations with generalized homogenous right-hand sides. J Biol Rhythm 14(6):433–448Google Scholar
  17. Pavlov A, Pogromsky A, van de Wouw N, Nijmeijer H (2004) Convergent dynamics, a tribute to boris pavlovich. Syst Control Lett 52:257–261MathSciNetCrossRefMATHGoogle Scholar
  18. Ropers D, de Jong H, Geiselmann J (2009) Mathematical modeling of genetic regulatory networks: stress responses in Escherichia coli. In: Systems biology and synthetic biology. John Wiley & Sons, Hoboken, pp 235-271Google Scholar
  19. Rosier L (1992) Homogeneous Lyapunov function for homogeneous continuous vector field. Syst Control Lett 19:467–473MathSciNetCrossRefMATHGoogle Scholar
  20. Shoval O, Alon U, Sontag E (2011) Symmetry invariance for adapting biological systems. SIAM J Appl Dyn Syst 10:857–886MathSciNetCrossRefMATHGoogle Scholar
  21. Skataric M, Sontag E (2012) A characterization of scale invariant responses in enzymatic networks. PLoS Comput Biol 8:e1002748MathSciNetCrossRefGoogle Scholar
  22. Smolen P, Baxter D, Byrne J (2000) Modeling transcriptional control in gene networks—methods, recent results, and future directions. Bull Math Biol 62(2):247–292CrossRefMATHGoogle Scholar
  23. Zubov V (1958) On systems of ordinary differential equations with generalized homogenous right-hand sides. Izvestia vuzov. Mathematica 1:80–88 (in Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Emmanuel Bernuau
    • 3
  • Denis Efimov
    • 1
    • 2
    • 4
  • Wilfrid Perruquetti
    • 1
    • 2
  1. 1.Non-A Team, Inria Lille, Parc Scientifique de la Haute BorneVilleneuve d’AscqFrance
  2. 2.CRIStAL, UMR-CNRS 9189, Ecole Centrale de LilleVilleneuve-d’AscqFrance
  3. 3.Faculty of EngineeringUniversity of PisaPisaItaly
  4. 4.Department of Control Systems and InformaticsNational Research University ITMOSaint PetersburgRussia

Personalised recommendations