Journal of Mathematical Biology

, Volume 72, Issue 3, pp 699–725 | Cite as

Spaces of phylogenetic networks from generalized nearest-neighbor interchange operations

  • Katharina T. Huber
  • Simone Linz
  • Vincent Moulton
  • Taoyang Wu
Article

Abstract

Phylogenetic networks are a generalization of evolutionary or phylogenetic trees that are used to represent the evolution of species which have undergone reticulate evolution. In this paper we consider spaces of such networks defined by some novel local operations that we introduce for converting one phylogenetic network into another. These operations are modeled on the well-studied nearest-neighbor interchange operations on phylogenetic trees, and lead to natural generalizations of the tree spaces that have been previously associated to such operations. We present several results on spaces of some relatively simple networks, called level-1 networks, including the size of the neighborhood of a fixed network, and bounds on the diameter of the metric defined by taking the smallest number of operations required to convert one network into another. We expect that our results will be useful in the development of methods for systematically searching for optimal phylogenetic networks using, for example, likelihood and Bayesian approaches.

Keywords

Phylogenetic networks Spaces of phylogenetic trees Phylogenetic tree metrics Nearest-neighbor interchange (NNI) 

Mathematics Subject Classification

05C90 92D15 

References

  1. Allen B, Steel M (2001) Subtree transfer operations and their induced metrics on evolutionary trees. Ann Comb 5:1–15MathSciNetCrossRefGoogle Scholar
  2. Baroni M, Grünewald S, Moulton V, Semple C (2005) Bounding the number of hybridisation events for a consistent evolutionary history. J Math Biol 51(2):171–182MathSciNetCrossRefMATHGoogle Scholar
  3. Billera LJ, Holmes SP, Vogtmann K (2001) Geometry of the space of phylogenetic trees. Adv Appl Math 27(4):733–767MathSciNetCrossRefMATHGoogle Scholar
  4. Bordewich M, Semple C (2005) On the computational complexity of the rooted subtree prune and regraft distance. Ann Comb 8(4):409–423MathSciNetCrossRefGoogle Scholar
  5. Cardona G, Rossello F, Valiente G (2009) Comparison of tree-child phylogenetic networks. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 6(4):552–569CrossRefGoogle Scholar
  6. Cardona G, Llabres M, Rosselló F, Valiente G (2011) Comparison of galled trees. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 8(2):410–427CrossRefGoogle Scholar
  7. Chen T, Skiena SS (1996) Sorting with fixed-length reversals. Discret Appl Math 71(1):269–295MathSciNetCrossRefMATHGoogle Scholar
  8. DasGupta B, He X, Jiang T, Li M, Tromp J, Zhang L (1997) On distances between phylogenetic trees. In: Proceedings of the eighth annual ACM-SIAM symposium on discrete algorithms. Society for industrial and applied mathematics, pp 427–436Google Scholar
  9. Day WH (1983) Properties of the nearest neighbor interchange metric for trees of small size. J Theor Biol 101(2):275–288CrossRefGoogle Scholar
  10. Ding Y, Grünewald S, Humphries P (2011) On agreement forests. J Comb Theory Ser A 118(7):2059–2065CrossRefMATHGoogle Scholar
  11. Gambette P, Huber K (2012) On encodings of phylogenetic networks of bounded level. J Math Biol 65(1):157–180MathSciNetCrossRefMATHGoogle Scholar
  12. Gambette P, Berry V, Paul C (2009) The structure of level-k phylogenetic networks. In: Proceedings of combinatorial pattern matching. Springer, New York, pp 289–300Google Scholar
  13. Gambette P, Berry V, Paul C (2012) Quartets and unrooted phylogenetic networks. J Bioinform Comput Biol 10:04Google Scholar
  14. Gordon K, Ford E, John KS (2013) Hamiltonian walks of phylogenetic treespaces. IEEE/ACM Trans Comput Biol Bioinform 10(4):1076–1079CrossRefGoogle Scholar
  15. Gusfield D (2014) ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phylogenetic networks. MIT Press, New YorkGoogle Scholar
  16. Huber KT, Moulton V (2013) Encoding and constructing 1-nested phylogenetic networks with trinets. Algorithmica 66(3):714–738MathSciNetCrossRefMATHGoogle Scholar
  17. Huber KT, van Iersel L, Kelk S, Suchecki R (2011) A practical algorithm for reconstructing level-1 phylogenetic networks. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 8(3):635–649CrossRefGoogle Scholar
  18. Humphries P, Wu T (2013) On the neighborhoods of trees. IEEE/ACM Trans Comput Biol Bioinform 10:721–728CrossRefGoogle Scholar
  19. Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: concepts algorithms and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Jansson J, Nguyen NB, Sung WK (2006) Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J Comput 35(5):1098–1121MathSciNetCrossRefMATHGoogle Scholar
  21. Jin G, Nakhleh L, Snir S, Tuller T (2006) Maximum likelihood of phylogenetic networks. Bioinformatics 22(21):2604–2611CrossRefGoogle Scholar
  22. Jin G, Nakhleh L, Snir S, Tuller T (2007) Inferring phylogenetic networks by the maximum parsimony criterion: a case study. Mol Biol Evol 24(1):324–337CrossRefGoogle Scholar
  23. Keijsper J, Pendavingh R (2014) Reconstructing a phylogenetic level-1 network from quartets. Bull Math Biol 76:2517–2541MathSciNetCrossRefMATHGoogle Scholar
  24. Lemey P, Salemi M, Vandamme AM (2009) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, CambridgeGoogle Scholar
  25. Li M, Tromp J, Zhang L (1996) On the nearest neighbour interchange distance between evolutionary trees. J Theor Biol 182(4):463–467CrossRefGoogle Scholar
  26. Moore GW, Goodman M, Barnabas J (1973) An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J Theor Biol 38(3):423–457CrossRefGoogle Scholar
  27. Moulton V, Wu T (2015) A parsimony-based metric for phylogenetic trees. Adv Appl Math 66:22–45MathSciNetCrossRefGoogle Scholar
  28. Nakhleh L (2010) A metric on the space of reduced phylogenetic networks. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 7(2):218–222CrossRefGoogle Scholar
  29. Radice R (2011) A Bayesian approach to phylogenetic networks. PhD thesis, University of BathGoogle Scholar
  30. Robinson DF (1971) Comparison of labeled trees with valency three. J Comb Theory Ser B 11(2):105–119CrossRefGoogle Scholar
  31. Rosselló F, Valiente G (2009) All that glisters is not galled. Math Biosci 221(1):54–59MathSciNetCrossRefMATHGoogle Scholar
  32. Semple C, Steel M (2003) Phylogenetics. Oxford University Press, OxfordGoogle Scholar
  33. Semple C, Steel M (2006) Unicyclic networks: compatibility and enumeration. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 3(1):84MathSciNetCrossRefGoogle Scholar
  34. Strimmer K, Moulton V (2000) Likelihood analysis of phylogenetic networks using directed graphical models. Mol Biol Evol 17(6):875–881CrossRefGoogle Scholar
  35. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Inc, Sunderland, Massachusetts, USA, pp 407–514Google Scholar
  36. Yu Y, Dong J, Liu KJ, Nakhleh L (2014) Maximum likelihood inference of reticulate evolutionary histories. Proc Natl Acad Sci 111(46):16448–16453Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Katharina T. Huber
    • 1
  • Simone Linz
    • 2
  • Vincent Moulton
    • 1
  • Taoyang Wu
    • 1
  1. 1.School of Computing SciencesUniversity of East AngliaNorwichUK
  2. 2.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations