Journal of Mathematical Biology

, Volume 71, Issue 6–7, pp 1551–1574 | Cite as

A study of the dynamics of multi-player games on small networks using territorial interactions

  • Mark Broom
  • Charlotte Lafaye
  • Karan Pattni
  • Jan Rychtář
Article

Abstract

Recently, the study of structured populations using models of evolutionary processes on graphs has begun to incorporate a more general type of interaction between individuals, allowing multi-player games to be played among the population. In this paper, we develop a birth-death dynamics for use in such models and consider the evolution of populations for special cases of very small graphs where we can easily identify all of the population states and carry out exact analyses. To do so, we study two multi-player games, a Hawk–Dove game and a public goods game. Our focus is on finding the fixation probability of an individual from one type, cooperator or defector in the case of the public goods game, within a population of the other type. We compare this value for both games on several graphs under different parameter values and assumptions, and identify some interesting general features of our model. In particular there is a very close relationship between the fixation probability and the mean temperature, with high temperatures helping fitter individuals and punishing unfit ones and so enhancing selection, whereas low temperatures give a levelling effect which suppresses selection.

Keywords

Evolutionary graph theory Structured populations Evolution  Game theory Territory 

Mathematics Subject Classification

91A22 91A43 60J10 

References

  1. Allen B, Nowak MA (2014) Games on graphs. EMS Surv Math Sci 1(1):113–151MATHMathSciNetCrossRefGoogle Scholar
  2. Allen B, Tarnita CE (2014) Measures of success in a class of evolutionary models with fixed population size and structure. J Math Biol 68(1–2):109–143MATHMathSciNetCrossRefGoogle Scholar
  3. Allen B, Sample C, Dementieva YA, Medeiros RC, Paoletti C, Nowak MA (2014) The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure. arXiv:1409.5459
  4. Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68(8):1923–1944MATHMathSciNetCrossRefGoogle Scholar
  5. Antal T, Redner S, Sood V (2006) Evolutionary dynamics on degree-heterogeneous graphs. Phys Rev Lett 96(18):188104CrossRefGoogle Scholar
  6. Broom M, Rychtář J (2008) An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc R Soc A Math Phys Eng Sci 464(2098):2609–2627MATHCrossRefGoogle Scholar
  7. Broom M, Rychtář J (2012) A general framework for analysing multiplayer games in networks using territorial interactions as a case study. J Theor Biol 302:70–80CrossRefGoogle Scholar
  8. Broom M, Rychtář J (2013) Game-theoretical models in biology. CRC Press, Boca RatonMATHGoogle Scholar
  9. Broom M, Cannings C, Vickers G (1997) Multi-player matrix games. Bull Math Biol 59(5):931–952MATHCrossRefGoogle Scholar
  10. Broom M, Hadjichrysanthou C, Rychtář J, Stadler B (2010) Two results on evolutionary processes on general non-directed graphs. Proc R Soc A Math Phys Eng Sci 466:2795–2798MATHCrossRefGoogle Scholar
  11. Bruni M, Broom M, Rychtář J (2014) Analysing territorial models on graphs. Involve J Math 7(2):129–149MATHCrossRefGoogle Scholar
  12. Bukowski M, Miekisz J (2004) Evolutionary and asymptotic stability in symmetric multi-player games. Int J Game Theory 33(1):41–54MATHMathSciNetCrossRefGoogle Scholar
  13. Débarre F, Hauert C, Doebeli M (2014) Social evolution in structured populations. Nat Commun 5. doi:10.1038/ncomms4409
  14. Ginsberg J, Macdonald D (1990) Foxes, wolves, jackals, and dogs: an action plan for the conservation of canids. IUNC, GlandGoogle Scholar
  15. Gokhale CS, Traulsen A (2010) Evolutionary games in the multiverse. Proc Natl Acad Sci 107(12):5500–5504CrossRefGoogle Scholar
  16. Gokhale CS, Traulsen A (2014) Evolutionary multiplayer games. Dyn Games Appl. doi:10.1007/s13235-014-0106-2
  17. Hadjichrysanthou C, Broom M, Rychtář J (2011) Evolutionary games on star graphs under various updating rules. Dyn Games Appl 1(3):386–407MATHMathSciNetCrossRefGoogle Scholar
  18. Harary F, Palmer FEM (1973) Graphical enumeration. Academic Press, New YorkMATHGoogle Scholar
  19. Hauert C, De Monte S, Hofbauer J, Sigmund K (2002) Volunteering as red queen mechanism for cooperation in public goods games. Science 296(5570):1129–1132CrossRefGoogle Scholar
  20. Karlin S, Taylor HM (1975) A first course in stochastic processes. Academic Press, LondonMATHGoogle Scholar
  21. Kelley S, Ransom D Jr, Butcher J, Schulz G, Surber B, Pinchak W, Santamaria C, Hurtado L (2011) Home range dynamics, habitat selection, and survival of greater roadrunners. J Field Ornithol 82(2):165–174CrossRefGoogle Scholar
  22. Killingback T, Doebeli M (1996) Spatial evolutionary game theory: Hawks and doves revisited. Proc R Soc Lond Ser B Biol Sci 263(1374):1135–1144CrossRefGoogle Scholar
  23. Kurokawa S, Ihara Y (2009) Emergence of cooperation in public goods games. Proc R Soc B Biol Sci 276(1660):1379–1384CrossRefGoogle Scholar
  24. Kurokawa S, Ihara Y (2013) Evolution of social behavior in finite populations: a payoff transformation in general n-player games and its implications. Theor Popul Biol 84:1–8MATHCrossRefGoogle Scholar
  25. Lieberman E, Hauert C, Nowak M (2005) Evolutionary dynamics on graphs. Nature 433(7023):312–316CrossRefGoogle Scholar
  26. Maciejewski W, Fu F, Hauert C (2014) Evolutionary game dynamics in populations with heterogenous structures. PLoS Comput Biol 10(4):e1003,567CrossRefGoogle Scholar
  27. Masuda N (2009) Directionality of contact networks suppresses selection pressure in evolutionary dynamics. J Theor Biol 258(2):323–334MathSciNetCrossRefGoogle Scholar
  28. Milinski M, Semmann D, Krambeck HJ, Marotzke J (2006) Stabilizing the earths climate is not a losing game: supporting evidence from public goods experiments. Proc Natl Acad Sci USA 103(11):3994–3998CrossRefGoogle Scholar
  29. Moran PAP (1958) Random processes in genetics. In: Mathematical proceedings of the Cambridge Philosophical Society, vol 54. Cambridge University Press, Cambridge, pp 60–71Google Scholar
  30. Nowak M (2006) Evolutionary dynamics, exploring the equations of life. Harward University Press, Cambridge, MAMATHGoogle Scholar
  31. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359(6398):826–829CrossRefGoogle Scholar
  32. Nowak MA, May RM (1993) The spatial dilemmas of evolution. Int J Bifurc Chaos 3(01):35–78MATHMathSciNetCrossRefGoogle Scholar
  33. Ohtsuki H, Hauert C, Lieberman E, Nowak M (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441(7092):502–505CrossRefGoogle Scholar
  34. Palm G (1984) Evolutionary stable strategies and game dynamics for n-person games. J Math Biol 19(3):329–334MATHMathSciNetCrossRefGoogle Scholar
  35. Santos F, Pacheco J (2006) A new route to the evolution of cooperation. J Evol Biol 19(3):726–733CrossRefGoogle Scholar
  36. Santos FC, Pacheco JM (2011) Risk of collective failure provides an escape from the tragedy of the commons. Proc Natl Acad Sci 108(26):10,421–10,425CrossRefGoogle Scholar
  37. Santos FC, Santos MD, Pacheco JM (2008) Social diversity promotes the emergence of cooperation in public goods games. Nature 454(7201):213–216CrossRefGoogle Scholar
  38. Schaffer ME (1988) Evolutionarily stable strategies for a finite population and a variable contest size. J Theor Biol 132(4):469–478MathSciNetCrossRefGoogle Scholar
  39. Shakarian P, Roos P, Johnson A (2012) A review of evolutionary graph theory with applications to game theory. Biosystems 107(2):66–80CrossRefGoogle Scholar
  40. Souza MO, Pacheco JM, Santos FC (2009) Evolution of cooperation under n-person snowdrift games. J Theor Biol 260(4):581–588MathSciNetCrossRefGoogle Scholar
  41. Traulsen A, Hauert C (2009) Stochastic evolutionary game dynamics. Revi Nonlinear Dyn Complex 2:25–61MathSciNetGoogle Scholar
  42. van Veelen M, Nowak MA (2012) Multi-player games on the cycle. J Theor Biol 292:116–128MATHCrossRefGoogle Scholar
  43. Voorhees B, Murray A (2013) Fixation probabilities for simple digraphs. Proc R Soc A Math Phys Eng Sci. doi:10.1098/rspa.2012.0676

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mark Broom
    • 1
  • Charlotte Lafaye
    • 2
  • Karan Pattni
    • 1
  • Jan Rychtář
    • 3
  1. 1.Department of MathematicsCity University LondonLondonUK
  2. 2.École Centrale ParisGrande Voie des VignesChâtenay-MalabryFrance
  3. 3.Department of Mathematics and StatisticsThe University of North Carolina at GreensboroGreensboroUSA

Personalised recommendations