Journal of Mathematical Biology

, Volume 71, Issue 6–7, pp 1481–1504 | Cite as

Connecting deterministic and stochastic metapopulation models

Article

Abstract

In this paper, we study the relationship between certain stochastic and deterministic versions of Hanski’s incidence function model and the spatially realistic Levins model. We show that the stochastic version can be well approximated in a certain sense by the deterministic version when the number of habitat patches is large, provided that the presence or absence of individuals in a given patch is influenced by a large number of other patches. Explicit bounds on the deviation between the stochastic and deterministic models are given.

Keywords

Stochastic patch occupancy model (SPOM) Vapnik–Chervonenkis theory 

Mathematics Subject Classification

92D40 60J10 60J27 

References

  1. Alonso D, McKane A (2002) Extinction dynamics in mainland-island metapopulations: an \( N\)-patch stochastic model. Bull Math Biol 64:913–958CrossRefGoogle Scholar
  2. Barbour AD, Luczak MJ (2008) Laws of large numbers for epidemic models with countably many types. Ann Appl Probab 18:2208–2238MATHMathSciNetCrossRefGoogle Scholar
  3. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  4. Burke CJ, Rosenblatt M (1958) A Markov function of a Markov chain. Ann Math Stat 29:1112–1122MATHMathSciNetCrossRefGoogle Scholar
  5. Darling RWR, Norris JR (2008) Differential equation approximations for Markov chains. Probab Surv 5:37–79MATHMathSciNetCrossRefGoogle Scholar
  6. Day J, Possingham HP (1995) A stochastic metapopulation model with variability in patch size and position. Theor Popul Biol 48:333–360MATHCrossRefGoogle Scholar
  7. Devroye L, Lugosi G (2001) Combinatorial methods in density estimation. Springer, New YorkMATHCrossRefGoogle Scholar
  8. Dudley RM (1979) Balls in \( R^{k} \) do not cut all subsets of \( k+2 \) points. Adv Math 31:306–308MATHMathSciNetCrossRefGoogle Scholar
  9. Durrett R, Liu X-F (1988) The contact process on a finite set. Ann Probab 16:1158–1173MATHMathSciNetCrossRefGoogle Scholar
  10. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  11. Hanski I, Gyllenberg M (1997) Uniting two general patterns in the distribution of species. Science 275:397–400CrossRefGoogle Scholar
  12. Hanski I, Moilanen A, Gyllenberg M (1996) Minimum viable metapopulation size. Am Nat 147:527–541CrossRefGoogle Scholar
  13. Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127MATHCrossRefGoogle Scholar
  14. Harris TE (1963) The theory of branching processes. Springer, BerlinMATHCrossRefGoogle Scholar
  15. Lorentz GG (1966) Metric entropy and approximation. Bull Am Math Soc 72:903–937MATHMathSciNetCrossRefGoogle Scholar
  16. McDiarmid C (1998) Concentration. In: Habib M, McDiarmid C, Ramirez-Alfonsin J, Reed B (eds) Probabilistic methods for algorithmic discrete mathematics, algorithms and combinatorics, vol 16. Springer, Berlin, pp 195–248CrossRefGoogle Scholar
  17. McVinish R, Pollett PK (2012) The limiting behaviour of a mainland-island metapopulation. J Math Biol 64:775–801MATHMathSciNetCrossRefGoogle Scholar
  18. Moilanen A (2004) SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecol Model 179:533–550CrossRefGoogle Scholar
  19. Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515CrossRefGoogle Scholar
  20. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  21. Ovaskainen O, Cornell SJ (2006) Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure. Theor Popul Biol 69:13–33MATHCrossRefGoogle Scholar
  22. Ovaskainen O, Hanski I (2001) Spatially structured metapopulation models: global and local assessment of metapopulation capacity. Theor Popul Biol 60:281–302MATHCrossRefGoogle Scholar
  23. Ovaskainen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61:285–295MATHCrossRefGoogle Scholar
  24. Sauer N (1972) On the density of families of sets. J Comb Theory Ser A 13:145–147MATHCrossRefGoogle Scholar
  25. Shaw MW (1994) Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc R Soc Lond B 259:243–248CrossRefGoogle Scholar
  26. Vapnik VN, Chervonenkis AYa (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab Appl 16:264–280MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Universität ZürichZurichSwitzerland
  2. 2.University of QueenslandBrisbaneAustralia

Personalised recommendations