Journal of Mathematical Biology

, Volume 71, Issue 5, pp 1211–1242 | Cite as

Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks

  • Sylvain Billiard
  • Régis Ferrière
  • Sylvie Méléard
  • Viet Chi Tran


How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming–Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming–Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.


Mutation-selection Measure-valued individual-based model  Neutral diversity Hitchhiking Selective sweeps  Adaptive dynamics  Limit theorems for multi-scale processes  Substitution Fleming–Viot Process 

Mathematics Subject Classification

92D25 60J80 92D15 60J75 



S. B., S. M. and V. C. T. have been supported by the ANR MANEGE (ANR-09-BLAN-0215), the Chair “Modélisation Mathématique et Biodiversité” of Veolia Environnement-Ecole Polytechnique-Museum National d’Histoire Naturelle-Fondation X. V.C.T. also acknowledges support from Labex CEMPI (ANR-11-LABX-0007-01). R. F. acknowledges support from National Science Foundation Award EF-0623632, the Institut Universitaire de France, and the Agence Nationale de la Recherche (“EVORANGE” Grant).


  1. Barton N (1998) The effect of hitchhiking on neutral genealogies. Genet Res 72:123–133CrossRefGoogle Scholar
  2. Barton N (2000) Genetic hitchhiking. Phil Trans R Soc Lond B 355:1553–1562CrossRefGoogle Scholar
  3. Champagnat N (2004) Etude mathématique de modèles stochastiques d’évolution issus de la théorie écologique des dynamiques adaptatives, phd thesis. Ph.D. thesis, Université Paris X-NanterreGoogle Scholar
  4. Champagnat N (2006) A microscopic interpretation for adaptative dynamics trait substitution sequence model. Stoch Process Appl 116:1127–1160zbMATHMathSciNetCrossRefGoogle Scholar
  5. Champagnat N, Méléard S (2011) Polymorphic evolution sequence and evolutionary branching. Probab Theory Relat Fields 151:45–94zbMATHCrossRefGoogle Scholar
  6. Champagnat N, Ferrière R, Méléard S (2008) From individual stochastic processes to macroscopic models in apative evolution. Stoch Models 24(Suppl 1):2–44Google Scholar
  7. Champagnat N, Jabin PE, Méléard S (2014) Adaptation in a stochastic multi-resources chemostat model. J Math Pures Appl 6:755–788CrossRefGoogle Scholar
  8. Chevin LM, Hospital F (2008) Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics 180:1645–1660CrossRefGoogle Scholar
  9. Christiansen F, Loeschcke V (1980) Evolution and intraspecific exploitative competition I. One-locus theory for small additive gene effects. Theor Popul Biol 18:297–313zbMATHMathSciNetCrossRefGoogle Scholar
  10. Collet P, Méléard S, JAJ M (2013) A rigorous model study of the adaptative dynamics of Mendelian diploids. J Math Biol 67:569–607zbMATHMathSciNetCrossRefGoogle Scholar
  11. Crow J, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New yorkGoogle Scholar
  12. Cutter A, Payseur B (2013) Genomic signatures of selection at linked sites: unifying the disparity among species. Nature 14:262–274Google Scholar
  13. Dawson D (1993) Mesure-valued markov processes. Springer, editor, Ecole d’Eté de probabilités de Saint-Flour XXI, vol 1541 of Lectures Notes in Math., New YorkGoogle Scholar
  14. Dawson D, Hochberg K (1982) Wandering random measures in the Fleming–Viot model. Ann Probab 10:554–580zbMATHMathSciNetCrossRefGoogle Scholar
  15. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357CrossRefGoogle Scholar
  16. Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612zbMATHMathSciNetCrossRefGoogle Scholar
  17. Donnelly P, Kurtz T (1996) A countable representation of the Fleming–Viot measure-valued diffusion. Ann Probab 24:698–742zbMATHMathSciNetCrossRefGoogle Scholar
  18. Durrett R, Schweinsberg J (2004) Approximating selective sweeps. Theor Popul Biol 66:129–138zbMATHCrossRefGoogle Scholar
  19. Eshel I, Feldman M, Bergman A (1998) Long-term evolution, short-term evolution, and population genetic theory. J Theor Biol 191:391–396CrossRefGoogle Scholar
  20. Etheridge A (2000) An introduction to superprocesses, volume 20 of University Lecture Series. American Mathematical Society, ProvidenceGoogle Scholar
  21. Etheridge A, Pfaffelhuber P, Wakolbinger A (2006) An approximate sampling formula under genetic hitchhiking. Ann Appl Probab 16:685–729zbMATHMathSciNetCrossRefGoogle Scholar
  22. Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14:1880–1919zbMATHMathSciNetCrossRefGoogle Scholar
  23. Geritz S, Kisdi E, Meszéna G, Metz J (1998) Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57CrossRefGoogle Scholar
  24. Gupta A, Metz J, Tran V (2014) A new proof for the convergence of an individual based model to the trait substitution sequence. Acta Appl Math 131:1–27zbMATHMathSciNetCrossRefGoogle Scholar
  25. Hammerstein P (1996) Darwinian adaptation, population genetics and the streetcar theory of evolution. J Math Biol 34:511–532Google Scholar
  26. Jacod J, Shiryaev A (1987) Limit theorems for stochastic processes. Springer, BerlinzbMATHCrossRefGoogle Scholar
  27. Jourdain B, Méléard S, Woyczynsk W (2012) Lévy flights in evolutionary ecology. J Math Biol 65:677–707zbMATHMathSciNetCrossRefGoogle Scholar
  28. Kaplan N, Hudson R, Langley C (1989) The hitchhiking effect revisited. Genetics 123:887–899Google Scholar
  29. Kojima K, Schaffer H (1967) Survival process of linked mutant genes. Evolution 21:518–531CrossRefGoogle Scholar
  30. Kurtz T (1992) Averaging for martingale problems and stochastic approximation. In: Applied stochastic analysis (New Brunswick, NJ, 1991), Lectures Notes in Control and Inform Sci, vol 177, Springer, BerlinGoogle Scholar
  31. Lloyd D (1977) Genetic and phenotypic models of natural selection. J Theor Biol 69:543–560CrossRefGoogle Scholar
  32. Matessi C, Schneider K (2009) Optimization under frequency-dependent selection. Theor Popul Biol 72:1–12Google Scholar
  33. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, New YorkzbMATHCrossRefGoogle Scholar
  34. Méléard S, Tran V (2009) Trait substitution sequence process and canonical equation for age-structured populations. J Math Biol 58:881–921zbMATHMathSciNetCrossRefGoogle Scholar
  35. Méléard S, Tran V (2012) Slow and fast scales for superprocess limits of age-structured populations. Stoch Process Appl 122:250–276zbMATHCrossRefGoogle Scholar
  36. Metz J, Nisbet R, Geritz S (1992) How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol 7:198–202Google Scholar
  37. Metz J, Geritz S, Meszéna G, Jacobs F, Van Heerwaarden J (1996) Adaptative dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: Van Strien SJ, Verduyn Lunel SM (eds) Stochastic and spatial structures of dynamical systems. North Holland, Amsterdam, The NetherlandsGoogle Scholar
  38. Ohta T, Kimura M (1973) Model of mutation appropriate to estimate number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204MathSciNetCrossRefGoogle Scholar
  39. Ohta T, Kimura M (1975) Effects of selected linked locus on heterozygosity of neutral alleles (hitchhiking effect). Genet Res 25:313–326CrossRefGoogle Scholar
  40. Roelly S (1986) A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17:43–65zbMATHMathSciNetCrossRefGoogle Scholar
  41. Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction. Macmillan, New YorkGoogle Scholar
  42. Schneider K, Kim Y (2010) An analytical model for genetic hitchhiking in the evolution of antimalarial drug resistance. Theor Popul Biol 78:93–103CrossRefGoogle Scholar
  43. Schoener T (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429CrossRefGoogle Scholar
  44. Skorohod A (1956) Limit theorems for stochastic processes. Theory Probab Appl 1:261–290MathSciNetCrossRefGoogle Scholar
  45. Smadi C (2014) An eco-evolutionary approach of adaptation and recombination in a large population of varying size. arXiv:14024104
  46. Smith JM, Haigh J (1974) The hitchhiking effect of a favourable gene. Genet Res 23:23–35CrossRefGoogle Scholar
  47. Stephan W, Wiehe T, Lenz W (1992) The effect of strongly selected substitutions on neutral polymorphism: analytical results based on diffusion theory. Theor Popul Biol 41:237–254zbMATHCrossRefGoogle Scholar
  48. Weissing F (1996) Genetic versus phenotypic models of selection: can genetics be neglected in a long-term perspective? J Math Biol 34:533–555zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sylvain Billiard
    • 1
  • Régis Ferrière
    • 2
    • 3
  • Sylvie Méléard
    • 4
  • Viet Chi Tran
    • 5
  1. 1.Laboratoire EEP, UFR de BiologieUniversité des Sciences et Technologies Lille 1Villeneuve d’Ascq CedexFrance
  2. 2.Eco-Evo-Math International LaboratoryInstitut de Biologie de l’ENSParisFrance
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  4. 4.CMAP, Ecole PolytechniqueCNRSPalaiseau CedexFrance
  5. 5.Laboratoire P. Painlevé, UFR de MathématiquesUniversité des Sciences et Technologies Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations