Advertisement

Journal of Mathematical Biology

, Volume 70, Issue 1–2, pp 133–171 | Cite as

On a poroviscoelastic model for cell crawling

  • L. S. Kimpton
  • J. P. Whiteley
  • S. L. Waters
  • J. M. Oliver
Article

Abstract

In this paper a minimal, one-dimensional, two-phase, viscoelastic, reactive, flow model for a crawling cell is presented. Two-phase models are used with a variety of constitutive assumptions in the literature to model cell motility. We use an upper-convected Maxwell model and demonstrate that even the simplest of two-phase, viscoelastic models displays features relevant to cell motility. We also show care must be exercised in choosing parameters for such models as a poor choice can lead to an ill–posed problem. A stability analysis reveals that the initially stationary, spatially uniform strip of cytoplasm starts to crawl in response to a perturbation which breaks the symmetry of the network volume fraction or network stress. We also demonstrate numerically that there is a steady travelling-wave solution in which the crawling velocity has a bell-shaped dependence on adhesion strength, in agreement with biological observation.

Keywords

Cell motility Two-phase flow Viscoelastic Cell Adhesion 

Mathematics Subject Classification (2000)

92C17 76A10 76T99 

Notes

Acknowledgments

This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). S.L.W. is grateful for funding from the EPSRC in the form of an Advanced Research Fellowship.

References

  1. Alt W, Dembo M (1999) Cytoplasm dynamics and cell motion: two-phase flow models. Math Biosci 156(1–2):207–228CrossRefzbMATHGoogle Scholar
  2. Alt W, Tranquillo R (1995) Basic morphogenetic system modeling shape changes of migrating cells: how to explain fluctuating lamellipodial dynamics. J Biol Syst 3(4):905–916CrossRefGoogle Scholar
  3. Alt W, Bock M, Möhl C (2010) Cell mechanics: from single-scale based models to multiscale modeling. In: Chauvière A, Preziosi L, Verdier C (eds) Coupling of cytoplasm and adhesion dynamics determines cell polarization and locomotion. Chapman and Hall/CRC, Boca Raton, London, New York, p 89–132Google Scholar
  4. Balay S, Gropp WD, Curfman McInnes L, Smith BF (1997) Modern software tools for scientific computing. In: Arge E, Bruaset AM, Langtangen HP (eds) Efficient management of parallelism in object oriented numerical software libraries. Birkhäuser Press, Boston, p 163–202Google Scholar
  5. Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L, Smith BF, Zhang H (2010) PETSc users manual. anl-95/11—revision 3.1. Argonne National LaboratoryGoogle Scholar
  6. Balay S, Brown J, Buschelman K, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L, Smith BF, Zhang H (2011) PETSc Web page. http://www.mcs.anl.gov/petsc.
  7. Bausch A, Ziemann F, Boulbitch A, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4):2038–2049CrossRefGoogle Scholar
  8. Borm B, Requardt R, Herzog V, Kirfel G (2005) Membrane ruffles in cell migration: indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp Cell Res 302(1):83–95CrossRefGoogle Scholar
  9. Bray D (2001) Cell movements: from molecules to motility. Garland Science, New YorkGoogle Scholar
  10. Burnette D, Manley S, Sengupta P, Sougrat R, Davidson M, Kachar B, Lippincott-Schwartz J (2011) A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol 13(4):371–382CrossRefGoogle Scholar
  11. Burton K, Park J, Taylor D (1999) Keratocytes generate traction forces in two phases. Mol Biol Cell 10(11):3745–3769CrossRefGoogle Scholar
  12. Callan-Jones A, Jülicher F (2011) Hydrodynamics of active permeating gels. New J Phys 13:093027CrossRefGoogle Scholar
  13. Callan-Jones A, Joanny J, Prost J (2008) Viscous-fingering-like instability of cell fragments. Phys Rev Lett 100(25):258106CrossRefGoogle Scholar
  14. Cogan N, Guy R (2010) Multiphase flow models of biogels from crawling cells to bacterial biofilms. HFSP J 4(1):11–25CrossRefGoogle Scholar
  15. Cogan NG, Keener JP (2004) The role of the biofilm matrix in structural development. Math Med Biol 21(2):147–166Google Scholar
  16. Dembo M, Harlow F (1986) Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys J 50(1):109–121CrossRefGoogle Scholar
  17. Dembo M, Harlow F, Alt W (1984) Cell surface dynamics: concepts and models. In: Perelson AS, DeLisi C, Wiegel FW (eds) The biophysics of cell surface motility. Marcel Dekker, New York, p 495–542Google Scholar
  18. Doubrovinski K, Kruse K (2007) Self-organization of treadmilling filaments. Phys Rev Lett 99(22):228104CrossRefGoogle Scholar
  19. Doubrovinski K, Kruse K (2008) Cytoskeletal waves in the absence of molecular motors. Eur Phys Lett 83:18003CrossRefGoogle Scholar
  20. Doubrovinski K, Kruse K (2010) Self-organization in systems of treadmilling filaments. Eur Phys J E 31(1):95–104CrossRefGoogle Scholar
  21. Doubrovinski K, Kruse K (2011) Cell motility resulting from spontaneous polymerization waves. Phys Rev Lett 107(25):258103CrossRefGoogle Scholar
  22. Du X, Doubrovinski K, Osterfield M (2012) Self-organized cell motility from motor-filament interactions. Biophys J 102:1738–1745CrossRefGoogle Scholar
  23. Eriksson K (1996) Computational differential equations. Cambridge University Press, CambridgezbMATHGoogle Scholar
  24. Giannone G, Dubin-Thaler B, Döbereiner H, Kieffer N, Bresnick A, Sheetz M (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116(3):431–443CrossRefGoogle Scholar
  25. Gracheva M, Othmer H (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66(1):167–193CrossRefMathSciNetGoogle Scholar
  26. Hanein D, Horwitz A (2012) The structure of cell-matrix adhesions: the new frontier. Curr Opin Cell Biol 24:134–140CrossRefGoogle Scholar
  27. Herant M, Marganski W, Dembo M (2003) The mechanics of neutrophils: synthetic modeling of three experiments. Biophys J 84(5):3389–3413CrossRefGoogle Scholar
  28. Herant M, Heinrich V, Dembo M (2006) Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci 119:1903–1913Google Scholar
  29. Hinz B, Alt W, Johnen C, Herzog V, Kaiser H (1999) Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp Cell Res 251(1):234–243CrossRefGoogle Scholar
  30. Hodge N, Papadopoulos P (2012) Continuum modeling and numerical simulation of cell motility. J Math Biol 64:1253–1279CrossRefMathSciNetzbMATHGoogle Scholar
  31. Joanny J, Jülicher F, Kruse K, Prost J (2007) Hydrodynamic theory for multi-component active polar gels. New J Phys 9:422CrossRefGoogle Scholar
  32. Jülicher F, Kruse K, Prost J, Joanny J (2007) Active behavior of the cytoskeleton. Phys Rep 449:3–28CrossRefMathSciNetGoogle Scholar
  33. Keren K, Yam P, Kinkhabwala A, Mogilner A, Theriot J (2009) Intracellular fluid flow in rapidly moving cells. Nat Cell Biol 11(10):1219–1224CrossRefGoogle Scholar
  34. Kimpton L, Whiteley J, Waters S, King J, Oliver J (2012) Multiple travelling-wave solutions in a minimal model for cell motility. Math Med Biol Adv Access. doi: 10.1093/imammb/dqs023 (published July 11, 2012)
  35. King J, Oliver J (2005) Thin-film modelling of poroviscous free surface flows. Eur J Appl Math 16(04):519–553CrossRefMathSciNetzbMATHGoogle Scholar
  36. Knapp D, Barocas V, Moon A, Yoo K, Petzold L, Tranquillo R (1997) Rheology of reconstituted type I collagen gel in confined compression. J Rheol 41(5):971–993CrossRefGoogle Scholar
  37. Kole T, Tseng Y, Jiang I, Katz J, Wirtz D (2005) Intracellular mechanics of migrating fibroblasts. Mol Biol Cell 16:328–338CrossRefGoogle Scholar
  38. Kruse K, Joanny J, Jülicher F, Prost J, Sekimoto K (2005) Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur Phys J E 16:5–16CrossRefGoogle Scholar
  39. Kuusela E, Alt W (2009) Continuum model of cell adhesion and migration. J Math Biol 58(1):135–161CrossRefMathSciNetzbMATHGoogle Scholar
  40. Larripa K, Mogilner A (2006) Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell. Phys A 372(1):113–123CrossRefGoogle Scholar
  41. Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K (1994) Traction forces generated by locomoting keratocytes. J Cell Biol 127(6):1957–1964CrossRefGoogle Scholar
  42. Levayer R, Lecuit T (2011) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22(2):61–81CrossRefGoogle Scholar
  43. Moeendarbary E, Valon L, Fritzsche M, Harris A, Moulding D, Thrasher A, Stride E, Mahadevan L, Charras G (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261CrossRefGoogle Scholar
  44. Mofrad M (2009) Rheology of the cytoskeleton. Annu Rev Fluid Mech 41:433–453CrossRefGoogle Scholar
  45. Mogilner A (2009) Mathematics of cell motility: have we got its number? J Math Biol 58(1):105–134CrossRefMathSciNetzbMATHGoogle Scholar
  46. Mogilner A, Marland E, Bottino D (2001) A minimal model of locomotion applied to the steady gliding movement of fish keratocyte cells. In: Maini P, Othmer H (eds) Mathematical models for biological pattern formation, the IMA volumes in mathematics and its applications, vol 121. Springer, New York, pp 269–293CrossRefGoogle Scholar
  47. Ohsumi T, Flaherty J, Evans M, Barocas V (2008) Three-dimensional simulation of anisotropic cell-driven collagen gel compaction. Biomech Model Mechanobiol 7(1):53–62CrossRefGoogle Scholar
  48. Oliver J, King J, McKinlay K, Brown P, Grant D, Scotchford C, Wood J (2005) Thin-film theories for two-phase reactive flow models of active cell motion. Math Med Biol 22(1):53CrossRefzbMATHGoogle Scholar
  49. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540CrossRefGoogle Scholar
  50. Pollard T, Borisy G (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465CrossRefGoogle Scholar
  51. Ridley A (2011) Life at the leading edge. Cell 145(7):1012–1022CrossRefGoogle Scholar
  52. Rottner K, Stradal T (2011) Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 23:569–578CrossRefGoogle Scholar
  53. Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model Simul 3(2):413–439CrossRefMathSciNetzbMATHGoogle Scholar
  54. Rubinstein B, Fournier M, Jacobson K, Verkhovsky A, Mogilner A (2009) Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys J 97(7):1853–1863CrossRefGoogle Scholar
  55. Sakamoto Y, Prudhomme S, Zaman M (2011) Viscoelastic gel-strip model for the simulation of migrating cells. Ann Biomed Eng 39(11):2735–2749CrossRefGoogle Scholar
  56. Sarvestani A, Jabbari E (2009) Analysis of cell locomotion on ligand gradient substrates. Biotechnol Bioeng 103(2):424–429CrossRefGoogle Scholar
  57. Schaub S, Bohnet S, Laurent V, Meister J, Verkhovsky A (2007) Comparative maps of motion and assembly of filamentous actin and myosin II in migrating cells. Mol Biol Cell 18(10):3723–3732CrossRefGoogle Scholar
  58. Shao D, Levine H, Rappel W (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. PNAS 109(18):6851–6856CrossRefGoogle Scholar
  59. Svitkina T, Verkhovsky A, McQuade K, Borisy G (1997) Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 139(2):397–415CrossRefGoogle Scholar
  60. Vallotton P, Gupton S, Waterman-Storer C, Danuser G (2004) Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. PNAS 101(26):9660–9665CrossRefGoogle Scholar
  61. Vallotton P, Danuser G, Bohnet S, Meister J, Verkhovsky A (2005) Tracking retrograde flow in keratocytes: news from the front. Mol Biol Cell 16(3):1223–1231CrossRefGoogle Scholar
  62. Verkhovsky A, Svitkina T, Borisy G (1999) Self-polarization and directional motility of cytoplasm. Curr Biol 9(1):11–20CrossRefGoogle Scholar
  63. Wolgemuth C, Stajic J, Mogilner A (2011) Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys J 101(3):545–553CrossRefGoogle Scholar
  64. Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M, Guck J, Käs J (2005) Optical rheology of biological cells. Phys Rev Lett 94(9):98103CrossRefGoogle Scholar
  65. Wright G, Guy R, Du J, Fogelson A (2011) A high-resolution finite-difference method for simulating two-fluid, viscoelastic gel dynamics. J Non-Newtonian Fluid Mech 166(19):1137–1157CrossRefzbMATHGoogle Scholar
  66. Yamaoka H, Matsushita S, Shimada Y, Adachi T (2012) Multiscale modeling and mechanics of filamentous actin cytoskeleton. Biomech Model Mechanobiol 11:291–302CrossRefGoogle Scholar
  67. Zajac M, Dacanay B, Mohler W, Wolgemuth C (2008) Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape. Biophys J 94(10):3810–3823CrossRefGoogle Scholar
  68. Ziebert F, Swaminathan S, Aranson I (2012) Model for self-polarization and motility of keratocyte fragments. J R Soc Interface 9:1084–1092CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • L. S. Kimpton
    • 1
  • J. P. Whiteley
    • 2
  • S. L. Waters
    • 1
  • J. M. Oliver
    • 1
  1. 1.Mathematical InstituteUniversity of Oxford, Radcliffe Observatory QuarterOxford UK
  2. 2.Department of Computer ScienceUniversity of OxfordOxford UK

Personalised recommendations