Journal of Mathematical Biology

, Volume 68, Issue 7, pp 1583–1605 | Cite as

Dynamics of stochastic epidemics on heterogeneous networks

Article

Abstract

Epidemic models currently play a central role in our attempts to understand and control infectious diseases. Here, we derive a model for the diffusion limit of stochastic susceptible-infectious-removed (SIR) epidemic dynamics on a heterogeneous network. Using this, we consider analytically the early asymptotic exponential growth phase of such epidemics, showing how the higher order moments of the network degree distribution enter into the stochastic behaviour of the epidemic. We find that the first three moments of the network degree distribution are needed to specify the variance in disease prevalence fully, meaning that the skewness of the degree distribution affects the variance of the prevalence of infection. We compare these asymptotic results to simulation and find a close agreement for city-sized populations.

Keywords

SIR model Diffusion Transmission Networks 

Mathematics Subject Classification

92D30 90B15 

Notes

Acknowledgments

The authors would like to acknowledge the financial support received from EPSRC, the editor and two anonymous reviews for their helpful comments, in particular relating to the analyses presented in Sect. 3.3 and Appendix C

References

  1. Alonso D, McKane AJ, Pascual M (2007) Stochastic amplification in epidemics. J Royal Soc Interface 4(14):575–582CrossRefGoogle Scholar
  2. Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Epidemiol Infect 108(1):513–528Google Scholar
  3. Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis, Springer lectures notes in statistics, vol 151. Springer, BerlinCrossRefMATHGoogle Scholar
  4. Baguelin M, Hoek AJV, Jit M, Flasche S, White PJ, Edmunds WJ (2010) Vaccination against pandemic influenza A/H1N1v in England: a real-time economic evaluation. Vaccine 28(12):2370–2384CrossRefGoogle Scholar
  5. Ball F, Neal P (2008) Network epidemic models with two levels of mixing. Math Biosci 212(1):69–87MathSciNetCrossRefMATHGoogle Scholar
  6. Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J Royal Soc Interface 4(16):879–91CrossRefGoogle Scholar
  7. Black A, McKane A, Nunes A, Parisi A (2009) Stochastic fluctuations in the susceptible-infective-recovered model with distributed infectious periods. Phys Rev E 80(2):21922CrossRefGoogle Scholar
  8. Colizza V, Barrat A, Barthélemy M, Vespignani A (2006) The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci USA 103(14):2015–2020CrossRefMATHGoogle Scholar
  9. Dangerfield CE, Ross JV, Keeling MJ (2009) Integrating stochasticity and network structure into an epidemic model. J Royal Soc Interface 6(38):761–74CrossRefGoogle Scholar
  10. Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV, Vernon MC (2011) Networks and the epidemiology of infectious disease. Interdiscip Perspectives Infect Dis 2011:1–28CrossRefGoogle Scholar
  11. Decreusefond L, Dhersin J-S, Moyal P, Tran VC (2012) Large graph limit for a SIR process in random network with heterogeneous connectivity. Ann Appl Probab 22(2):541–575MathSciNetCrossRefMATHGoogle Scholar
  12. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases. Wiley, ChichesterMATHGoogle Scholar
  13. Durrett R (2007) Random graph dynamics. Cambridge University Press, CambridgeMATHGoogle Scholar
  14. Eames KTD, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc Natl Acad Sci USA 99(20):13330–13335CrossRefGoogle Scholar
  15. Ferguson N, Keeling M, Edmunds W, Gant R, Grenfell B, Amderson R, Leach S (2003) Planning for smallpox outbreaks. Nature 425(6959):681–685CrossRefGoogle Scholar
  16. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361CrossRefGoogle Scholar
  17. Kamp C (2010) Untangling the interplay between epidemic spread and transmission network dynamics. PLoS Comput Biol 6(11):e1000984MathSciNetCrossRefGoogle Scholar
  18. Keeling MJ (1999) The effects of local spatial structure on epidemiological invasions. Proc Royal Soc B 266(1421):859–67CrossRefGoogle Scholar
  19. Keeling MJ, Rohani P (2008) Modeling infectious diseases. Princeton University Press, PrincetonMATHGoogle Scholar
  20. Kiss IZ, Green DM, Kao RR (2006) The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math Biosci 203(1):124–36MathSciNetCrossRefMATHGoogle Scholar
  21. Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Probab 7(1):49–58Google Scholar
  22. Kurtz TG (1971) Limit Theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Probab 8(2):344–356MathSciNetCrossRefMATHGoogle Scholar
  23. Lindquist J, Ma J, van den Driessche P, Willeboordse FH (2011) Effective degree network disease models. J Math Biol 62(2):143–164MathSciNetCrossRefMATHGoogle Scholar
  24. May RM, Anderson RM (1988) The transmission dynamics of human immunodeficiency virus (HIV). Philos Trans Royal Soc London Ser B 321(1207):565–607CrossRefGoogle Scholar
  25. May RM, Lloyd AL (2001) Infection dynamics on scale-free networks. Phys Rev E 64:066112Google Scholar
  26. Miller JC (2010) A note on a paper by Erik Volz: SIR dynamics in random networks. J Math Biol 62(3):349–358CrossRefMATHGoogle Scholar
  27. Miller JC, Slim AC, Volz E (2012) Edge-based compartmental modelling for infectious disease spread. J Royal Soc Interface 9(70):890–906Google Scholar
  28. Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithms 6(2/3):161–179MathSciNetCrossRefMATHGoogle Scholar
  29. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5(3):381–391CrossRefGoogle Scholar
  30. Newman M (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):16128MathSciNetCrossRefGoogle Scholar
  31. van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, AmsterdamMATHGoogle Scholar
  32. Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63:066117CrossRefGoogle Scholar
  33. Rand DA (1999) Correlation equations and pair approximations for spatial ecologies. Adv Ecol Theory 12(3–4):100–142CrossRefMATHGoogle Scholar
  34. Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, Leung GM, Ho L-M, Lam T-H, Thach TQ, Chau P, Chan K-P, Lo S-V, Leung P-Y, Tsang T, Ho W, Lee K-H, Lau EMC, Ferguson NM, Anderson RM (2003) Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300(5627):1961–6CrossRefGoogle Scholar
  35. Rogers T (2011) Maximum-entropy moment-closure for stochastic systems on networks. Theory Exp J Stat Mech.Google Scholar
  36. Ross JV (2006) A stochastic metapopulation model accounting for habitat dynamics. J Math Biol 52(6):788–806MathSciNetCrossRefMATHGoogle Scholar
  37. Schneeberger A, Mercer CH, Gregson SAJ, Ferguson NM, Nyamukapa CA, Anderson RM, Johnson AM, Garnett GP (2004) Scale-free networks and sexually transmitted diseases: a description of observed patterns of sexual contacts in Britain and Zimbabwe. Sex Transm Dis 31(6):380–7CrossRefGoogle Scholar
  38. Tildesley MJ, Savill NJ, Shaw DJ, Deardon R, Brooks SP, Woolhouse MEJ, Grenfell BT, Keeling MJ (2006) Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature 440(7080):83–6CrossRefGoogle Scholar
  39. Volz E (2008) SIR dynamics in random networks with heterogeneous connectivity. J Math Biol 56(3):293–310MathSciNetCrossRefMATHGoogle Scholar
  40. Volz E, Myers LA (2007) Susceptible-infected-recovered epidemics in dynamic contact networks. Proc Royal Soc B 274(1628):2925–2933CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Complexity ScienceUniversity of WarwickCoventryUK
  2. 2.Warwick Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations