Advertisement

Journal of Mathematical Biology

, Volume 68, Issue 6, pp 1453–1478 | Cite as

A mathematical analysis of rebound in a target-mediated drug disposition model: I.Without feedback

  • Philip J. Aston
  • Gianne Derks
  • Balaji M. Agoram
  • Piet H. van der Graaf
Article

Abstract

We consider the possibility of free receptor (antigen/cytokine) levels rebounding to higher than the baseline level after one or more applications of an antibody drug using a target-mediated drug disposition model. Using geometry and dynamical systems analysis, we show that rebound will occur if and only if the elimination rate of the drug–receptor product is slower than the elimination rates of the drug and of the receptor. We also analyse the magnitude of rebound through approximations and simulations and demonstrate that it increases if the drug dose increases or if the difference between the elimination rate of the drug–receptor product and the minimum of the elimination rates of the drug and of the receptor increases.

Mathematics Subject Classification

92C45 92C50 34E10 37L25 

Notes

Acknowledgments

We are grateful for the input of Adewale Raji in the preliminary work for this paper. This preliminary stage was in part financially supported through the Biopharma Skills Project of the Universities of Surrey and Reading, jointly funded by the Higher Education Funding Council for England’s Economic Challenge Investment Fund (ECIF) and the South East England Development Agency (SEEDA).

References

  1. Agoram B, Martin S, van der Graaf P (2007) The role of mechanism-based pharmacokinetic-pharmacodynamic (pk-pd) modelling in translational research of biologics. Drug Discov Today 12:1018–1024CrossRefGoogle Scholar
  2. Ait-Oudhia S, Lowe P, Mager D (2012) Bridging clinical outcomes of canakinumab treatment in rheumatoid arthritis patients with a population model of il-1\(\beta \) kinetics. Pharmacomet Syst Pharmacol CPT. doi: 10.1038/psp.2012.6
  3. Aston P, Derks G, Raji A, Agoram B, van der Graaf P (2011) Mathematical analysis of the pharmacokinetic-pharmacodynamic (pkpd) behaviour of monoclonal antibodies: predicting in vivo potency. J Theor Biol 281:113–121CrossRefGoogle Scholar
  4. Aston P, Derks G, Agoram B, van der Graaf P (2012) A mathematical analysis of rebound in a target-mediated drug disposition model. II. With feedback. Abstract at VPH2012. http://www.vph-noe.eu/vph2012
  5. Bhatia A, Kast R (2007) Tnf can paradoxically increase on etanercept treatment, occasionally contributing to TNF-mediated disease. J Rheum 34:447Google Scholar
  6. Bravo Vergal Y, Hawkins N, Claxton K, Asseburg C, Palmer S, Woolacoot N, Bruce I, Sculpher M (2007) The cost-effectiveness of etanercept and infliximab for the treatment of patients with psoriatic arthritis. Rheumatology 46:1729–1735CrossRefGoogle Scholar
  7. Cacheux W, Boisserie T, Staudacher L, Vignaux O, Dousset B, Soubrane O, Terris B, Mateus C, Chaussade S, Goldwasser F (2008) Reversible tumor growth acceleration following bevacizumab interruption in metastatic colorectal cancer patients scheduled for surgery. Ann Onc 19:1659–1661CrossRefGoogle Scholar
  8. Chan J, Piper D, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia A, Di Y, Shetterly S, Arimura Z, Salomonis H, Romanow W, Thibault S, Zhang R, Cao P, Yang X, Yu T, Lu M, Retter M, Kwon G, Henne K, Pan O, Tsai M, Fuchslocher B, Yang E, Zhou L, Lee K, Daris M, Sheng J, Wang Y, Shen W, Yeh W, Emery M, Walker N, Shan B, Schwarz M, Jackson S (2009) A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA 106:9820–9825CrossRefGoogle Scholar
  9. Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31:53–98CrossRefMATHMathSciNetGoogle Scholar
  10. Haringman J, Gerlag D, Smeets T, Baeten D, van den Bosch F, Bresnihan B, Breedveld F, Dinant H, Legay F, Gram H, Loetscher P, Schmouder R, Woodworth T, Tak P (2006) A randomized controlled trial with an anti-ccl2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 54:2387–2392CrossRefGoogle Scholar
  11. Jordan D, Smith P (2007) Nonlinear ordinary differential equations, 4th edn. OUP, New YorkGoogle Scholar
  12. Klein B, Zhang X, Lu Z, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863–872Google Scholar
  13. Krippendorff D, Oyarzun B-F, Huisinga W (2009) Ligand accumulation counteracts therapeutic inhibition of receptor systems. In: Proceedings of foundations of systems biology in engeneering, FOSBE, pp 173–176Google Scholar
  14. Levy G (1994) Pharmacologic target mediated drug disposition. Clin Pharmacol Therap 56:248–252CrossRefGoogle Scholar
  15. Lowe P, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol 68:61–76CrossRefGoogle Scholar
  16. Mager D, Jusko W (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532CrossRefGoogle Scholar
  17. Meno-Tetang G, Lowe P (2005) On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach. Bas Clin Pharm Tox 96:182–192CrossRefGoogle Scholar
  18. Munafo A, Priestley A, Nestorov I, Visich J, Rogge M (2007) Safety, pharmacokinetics and pharmacodynamics of atacicept in healthy volunteers. Eur J Clin Pharmacol 63:647–656CrossRefGoogle Scholar
  19. Ng C, Stefanich E, Anand B, Fielder P, Vaickus L (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23:95–103CrossRefGoogle Scholar
  20. Peletier L, Gabrielsson J (2009) Dynamics of target-mediated drug disposition. Eur J Pharm Sci 38:445–464CrossRefGoogle Scholar
  21. Peletier L, Gabrielsson J (2012a) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39:429–451CrossRefGoogle Scholar
  22. Peletier L, Gabrielsson J (2012b) Dynamics of target-mediated drug disposition: how a drug reaches its target. Comput Geosc. doi: 10.1007/s10596-012-9312-4
  23. Smith H (1995) Monotone dynamical systems. In: An introduction to the theory of competitive and cooperative systems, Mathematical surveys and monographs, vol 41. AMS, ProvidenceGoogle Scholar
  24. Stefanini M, Wu F, Gabhann F, Popel A (2010) Increase of plasma vegf after intravenous administration of bevacizumab is predicted by a pharmacokinetic model. Cancer Res 70:9886–9894CrossRefGoogle Scholar
  25. Vugmeister Y, Tian X, Szlut P, Kasaian M, Xu X (2009) Pharmacokinetic and pharmacodynamics modeling of a humanized anti-IL-13 antibody in naive and ascaris-challenged cynomolgus monkeys. Pharmaceut Res 26:306–315CrossRefGoogle Scholar
  26. Wang B, Lau YY, Liang M, Vainshtein I, Zusmanovich M, Lu H, Magrini F, Sleeman M, Roskos L (2012) Mechanistic modeling of antigen sink effect for mavrilimumab following intravenous administration in patients with rheumatoid arthritis. J Clin Pharmacol 52:1150–1161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philip J. Aston
    • 1
  • Gianne Derks
    • 1
  • Balaji M. Agoram
    • 2
  • Piet H. van der Graaf
    • 3
  1. 1.Department of MathematicsUniversity of SurreyGuildfordUK
  2. 2.MedImmune, Pharmacokinetics/Dynamics and BioanalysisCambridgeUK
  3. 3.Leiden Academic Centre for Drug Research (LACDR)LeidenThe Netherlands

Personalised recommendations