Journal of Mathematical Biology

, Volume 68, Issue 4, pp 969–987 | Cite as

The evolutionary consequences of alternative types of imperfect vaccines



The emergence and spread of mutant pathogens that evade the effects of prophylactic interventions, including vaccines, threatens our ability to control infectious diseases globally. Imperfect vaccines (e.g. those used against influenza), while not providing life-long immunity, confer protection by reducing a range of pathogen life-history characteristics; conversely, mutant pathogens can gain an advantage by restoring the same range of traits in vaccinated hosts. Using an SEIR model motivated by equine influenza, we investigate the evolutionary consequences of alternative types of imperfect vaccination, by comparing the spread rate of three types of mutant pathogens, in response to three types of vaccines. All mutant types spread faster in response to a transmission-blocking vaccine, relative to vaccines that reduce the proportion of exposed vaccinated individuals becoming infectious, and to vaccines that reduce the length of the infectious period; this difference increases with increasing vaccine efficacy. We interpret our results using the first published Price equation formulation for an SEIR model, and find that our main result is explained by the effects of vaccines on the equilibrium host distribution across epidemiological classes. In particular, the proportion of vaccinated infectious individuals among all exposed and infectious hosts, which is relatively higher in the transmission-blocking vaccine scenario, is important in explaining the faster spread of mutant strains in response to that vaccine. Our work illustrates the connection between epidemiological and evolutionary dynamics, and the need to incorporate both in order to explain and interpret findings of complicated infectious disease dynamics.


Evolutionary epidemiology Vaccination Resistance  Price equation Influenza SEIR 

Mathematics Subject Classification (2000)

34-XX 37N25 92B05 

Supplementary material

285_2013_654_MOESM1_ESM.pdf (144 kb)
Supplementary material 1 (pdf 144 KB)


  1. Bloom J, Gong L, Baltimore D (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328(5983):1272–1275. doi:10.1126/science.1187816 CrossRefGoogle Scholar
  2. Dancer SJ (2011) Hospital cleaning in the 21st century. Eur J Clin Microbiol Infect Dis 30(12):1473–1481. doi:10.1007/s10096-011-1250-x CrossRefGoogle Scholar
  3. Day T, Gandon S (2006) Insights from Price’s equation into evolutionary epidemiology. DIMACS Ser Discrete Math Theor Comput Sci 71:23–44MathSciNetGoogle Scholar
  4. Day T, Gandon S (2012) The evolutionary epidemiology of multilocus drug resistance. Evolution 66(5):1582–1597. doi:10.1111/j.1558-5646.2011.01533.x CrossRefGoogle Scholar
  5. Day T, Proulx SR (2004) A general theory for the evolutionary dynamics of virulence. American Naturalist 163(4):E40–E63. doi:10.1086/382548 CrossRefGoogle Scholar
  6. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Vir 30(2):115–133. doi:10.1016/j.jcv.2004.02.009 CrossRefGoogle Scholar
  7. Diekmann O, Heesterbeek J, Metz J (1990) On the definition and the computation of the basic reproductive ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382CrossRefMATHMathSciNetGoogle Scholar
  8. Fryer HR, McLean AR (2011) Modelling the spread of HIV immune escape mutants in a vaccinated population. PLoS Comput Biol 7(12):e1002,289. doi:10.1371/journal.pcbi.1002289
  9. Gandon S, Day T (2007) The evolutionary epidemiology of vaccination. J Roy Soc Interface 4(16):803–817. doi:10.1098/rsif.2006.0207 CrossRefGoogle Scholar
  10. Gandon S, Day T (2008) Evidences of parasite evolution after vaccination. Vaccine 26:C4–C7. doi:10.1016/j.vaccine.2008.02.007 CrossRefGoogle Scholar
  11. Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414(6865):751–756. doi:10.1038/414751a CrossRefGoogle Scholar
  12. Gupta S, Ferguson N, Anderson R (1997) Vaccination and the population structure of antigenically diverse pathogens that exchange genetic material. Proc R Soc Lond Ser B-Biol Sci 264(1387):1435–1443CrossRefGoogle Scholar
  13. Holmes EC (2009) The evolution and emergence of RNA viruses. Oxford University Press, OxfordGoogle Scholar
  14. Keeling MJ, Rohani P (2007) Modeling Infectious Diseases in Humans and Animals, 2007th edn. Princeton University Press, PrincetonGoogle Scholar
  15. Kramarz P, Monnet D, Nicoll A, Yilmaz C, Ciancio B (2009) Use of oseltamivir in 12 European countries between 2002 and 2007-lack of association with the appearance of oseltamivir-resistant influenza A(H1N1) viruses. Euro Surveill 14(5)Google Scholar
  16. Martcheva M, Bolker BM, Holt RD (2008) Vaccine-induced pathogen strain replacement: what are the mechanisms? J Roy Soc Interface 5(18):3–13. doi:10.1098/rsif.2007.0236 Google Scholar
  17. McLean A (1995) Vaccination, evolution and changes in the efficacy of vaccines—a theoretical framework. Proc R Soc Lond Ser B-Biol Sci 261(1362):389–393. doi:10.1098/rspb.1995.0164 CrossRefGoogle Scholar
  18. McLean A (1998) Vaccines and their impact on the control of disease. Br Med Bull 54(3):545–556CrossRefGoogle Scholar
  19. Park A, Daly J, Lewis N, Smith D, Wood J, Grenfell B (2009) Quantifying the impact of immune escape on transmission dynamics of influenza. Science 326(5953):726–728. doi:10.1126/science.1175980 CrossRefGoogle Scholar
  20. Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, Cooper BS, Finelli L, Biedrzycki P, Lipsitch M, New York City Swine Flu Investigation Team (2009) The severity of pandemic H1N1 influenza in the United States, from April to July 2009: a Bayesian analysis. PLoS Med 6(12):e1000,207. doi:10.1371/journal.pmed.1000207
  21. Price G (1970) Selection and covariance. Nature 227(5257):520. doi:10.1038/227520a0 CrossRefGoogle Scholar
  22. Regoes RR, Bonhoeffer S (2006) Emergence of drug-resistant influenza virus: population dynamical considerations. Science 312(5772):389–391. doi:10.1126/science.1122947 CrossRefGoogle Scholar
  23. Restif O (2009) Evolutionary epidemiology 20 years on: challenges and prospects. Infect Genet Evol 9(1):108–123. doi:10.1016/j.meegid.2008.09.007 CrossRefGoogle Scholar
  24. Restif O, Grenfell BT (2007) Vaccination and the dynamics of immune evasion. J Roy Soc Interface 4(12):143–153. doi:10.1098/rsif.2006.0167 CrossRefGoogle Scholar
  25. Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ, Gregory V, Gust ID, Hampson AW, Hay AJ, Hurt AC, de Jong JC, Kelso A, Klimov AI, Kageyama T, Komadina N, Lapedes AS, Lin YP, Mosterin A, Obuchi M, Odagiri T, Osterhaus AD, Rimmelzwaan GF, Shaw MW, Skepner E, Stohr K, Tashiro M, Fouchier RA, Smith DJ (2008) Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine 26(Supplement 4):D31–D34. doi:10.1016/j.vaccine.2008.07.078 CrossRefGoogle Scholar
  26. Saleh S, Haddadin RNS, Baillie S, Collier PJ (2011) Triclosan—an update. Lett Appl Microbiol 52(2):87–95. doi:10.1111/j.1472-765X.2010.02976.x CrossRefGoogle Scholar
  27. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84(19):9733–9748. doi:10.1128/JVI.00694-10 CrossRefGoogle Scholar
  28. Satou K, Nishiura H (2006) Basic reproduction number for equine-2 influenza virus a (H3N8) epidemic in racehorse facilities in Japan, 1971. J Equine Vet Res 26(7):310–316. doi:10.1016/j.jevs.2006.05.003 CrossRefGoogle Scholar
  29. Stilianakis NI, Perelson AS, Hayden FG (1998) Emergence of drug resistance during an influenza epidemic: insights from a mathematical model. J Infect Dis 177(4):863–873CrossRefGoogle Scholar
  30. Taubenberger J (2006) The origin and virulence of the 1918 “Spanish” influenza virus. Proc Am Phil Soc 150(1):86–112Google Scholar
  31. Thompson M, Shay D, Zhou H, Bridges C, Cheng P, Burns E, Bresee J, Cox N (2010) Estimates of deaths associated with seasonal influenza-United States, 1976–2007 (Reprinted from MMWR, vol 59, pp 1057–1062, 2010). JAMA-J Am Med Assoc 304(16):1778–1780Google Scholar
  32. Webby R, Webster R (2003) Are we ready for pandemic influenza? Science 302(5650):1519–1522CrossRefGoogle Scholar
  33. Wei C, Boyington J, McTamney P, Kong W, Pearce M, Xu L, Andersen H, Rao S, Tumpey T, Yang Z, Nabel G (2010) Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329(5995):1060–1064. doi:10.1126/science.1192517 CrossRefGoogle Scholar
  34. Williams PD (2010) Darwinian interventions: taming pathogens through evolutionary ecology. Trends Parasitol 26(2):83–92. doi:10.1016/ CrossRefGoogle Scholar
  35. Yasui K, Amano Y, Minami I, Nakamura S, Akazawa Y, Uchida N (2007) Recent changes in the trends of seasonal influenza outbreaks in the Nagano prefectural area of Japan: an oseltamivir effect? J Infect Chemother 13(6):429–431. doi:10.1007/s10156-007-0554-3 CrossRefGoogle Scholar
  36. zur Wiesch PA, Kouyos R, Engelstädter J, Regoes RR, Bonhoeffer S (2011) Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infec Dis 11(3):236–247. doi:10.1016/S1473-3099(10)70264-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Odum School of EcologyUniversity of GeorgiaAthensUSA
  2. 2.School of Forestry and Wildlife SciencesAuburn UniversityAuburnUSA
  3. 3.Department of Infectious Diseases, College of Veterinary Medicine University of GeorgiaAthensUSA

Personalised recommendations